J4 ›› 2010, Vol. 27 ›› Issue (4): 474-478.

• 半导体光电 • 上一篇    下一篇

GaAs/InP键合电学性质的研究

何国荣1,渠红伟2,杨国华2,郑婉华2,陈良惠2   

  1. 1 深圳信息职业技术学院电子通信技术系,深圳 518029, China;
    2中科院半导体研究所纳米光电子实验室,北京 100083, China
  • 收稿日期:2009-10-30 修回日期:2009-12-21 出版日期:2010-07-28 发布日期:2010-06-13
  • 通讯作者: 何国荣(1978-),男,湖南郴州人,讲师,研究方向为光电子器件设计与研制. E-mail:hegr@sziit.com.cn
  • 基金资助:

    国家自然科学基金(60837001),信息学院青年自然科学基金项目(QN-08011)

Electrical characteristics of bonded GaAs/InP

HE Guo-rong1, QU Hong-wei2, YANG Guo-hua2, ZHENG Wan-hua2, CHEN Liang-hui2   

  1. 1 Department of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen, 518029; 
    2 Nano-optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • Received:2009-10-30 Revised:2009-12-21 Published:2010-07-28 Online:2010-06-13

摘要:

III-V族晶片键合技术对于光电器件的制备和实现光电集成有着重要意义,然而,对于键合界面的电学性质仍然研究较少。采用热电子发射理论,基于界面态能级在禁带中连续分布的假设,根据分布函数结合I-V测试曲线可建立键合结构的界面态计算模型。利用该模型对不同条件下键合的InP/GaAs电学性质做了分析比较,通过初始势垒的确定,计算并比较了各种键合条件下GaAs/InP键合时的界面电荷及界面态密度。实验及计算结果表明疏水处理表面550度条件下键合晶片对有更低的表面初始势垒和更少的界面态密度,因而具有更好的I-V特性。

关键词: 材料, 界面态密度, 热电子发射, 键合

Abstract:

Bonding technique of III-V group materials is important for fabrication of optoelectronic devices and realization of OEIC. However, electrical characteristic of the bonded interface, which is very important for the device design, is seldom investigated yet. Based on thermionic emission theory and assumption that interface states distribute continuously in the band gap, and combined with distribution function, calculation model of interface states for bonded structure could be set up. This model is applied to analyze the electrical characteristics of bonded GaAs/InP wafers, which were subjected to different surface treatment and annealing temperature. Interface state density was firstly calculated after the definition of initialized electronic barrier of GaAs. Results show that sample bonded at 550 with hydrophobic surface treatment has the lowest initial barrier height and the smallest interface state density; as a result, it performs best in terms of I-V characteristics.

Key words: materials, interface state density, thermionic emission, bonding