J4 ›› 2013, Vol. 30 ›› Issue (3): 257-267.
• 综述 • 下一篇
杜海伟
收稿日期:
2013-01-04
修回日期:
2013-01-14
出版日期:
2013-05-28
发布日期:
2013-05-06
通讯作者:
杜海伟(1980- )博士,主要从事光学方法产生强场THz辐射及THz应用、超快光学方面的研究。
E-mail:haiweidu@yahoo.com
DU Hai-wei
Received:
2013-01-04
Revised:
2013-01-14
Published:
2013-05-28
Online:
2013-05-06
摘要: 主要介绍利用超快激光技术产生和探测THz波辐射。THz波探测方法包括电光取样和空气探测。电光取样利用光学电光效应,采用探测激光偏振态的改变得到THz电场时域波形,广泛应用在TDS系统中。空气探测方法利用激光在空气中的三阶非线性效应,可以测得THz时域波形,并且该方法没有晶体的限制,因此可以探测频谱较宽的THz脉冲。产生THz的方法主要包括光电导天线、光学Dember效应、光整流和激光等离子体。其中前三者受到材料本征声子的影响,产生的THz谱宽有一定限制。倾斜激光脉冲波前入射非线性晶体光整流可以产生很强的THz波。双色飞秒激光脉冲与空气等离子体作用,可以产生较强的宽谱THz辐射,并且其谱宽与激光脉冲宽度密切相关。
中图分类号:
杜海伟. 基于超快激光技术的THz波产生和探测[J]. J4, 2013, 30(3): 257-267.
DU Hai-wei. Terahertz wave generation and detection based upon ultrafast laser technology[J]. J4, 2013, 30(3): 257-267.
[1] Williams G. Filling the THz gap-high power sources and applications [J]. Rep. Prog. Phys., 2006, 69: 301-326. [2] Reimann K. Table top sources of ultrashort THz pulses [J]. Rep. Prog. Phys., 2007, 70: 1597-1632. [3] Jepsen P, Cooke D, Koch M. THz spectroscopy and imaging-modern techniques and applications [J]. Laser Photonics Rev., 2011, 5(1): 124-166. [4] Zhang Cunlin. Terahertz sensing and imaging [M]. National Defence Industry Press, 2008, 13-20 (in Chinese). [5] Zhang Lei, Xu Xin-long, Li Fu-li. Review of the progress of T-ray imaging [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2005, 22(2): 129-134 (in Chinese). [6] Zhang Huaiwu. Research of terahertz science and technology in China [J]. China Basic Science (中国基础科学), 2008, 1:15-20 (in Chinese). [7] Chan W L, Deibel J, Mittleman D. Imaging with terahertz radiation [J]. Rep. Prog. Phys., 2007, 70(8): 1325-1379. [8] Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy [J]. Rev. Mod. Phys., 2011, 83(2): 543. [9] Schmuttenmaer C. Exploring dynamics in the far-infrared with terahertz spectroscopy [J]. Chem. Rev., 2004, 104: 1759-1779. [10] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Nat. Materials, 2002, 1: 26-33. [11] Hoffmann M, Fulop J. Intense. Intense ultrashort terahertz pulses: generation and applications [J]. J. Phys. D: Appl. Phys., 2011, 44: 083001. [12] Hebling J, Yeh Ka-lo, Hoffmann C, et al. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy [J]. IEEE J. Sel. Top. Quantum Electron., 2008, 14: 345-353. [13] Xue Bing, Fan Wen-hui, Liu Hai-liang, et al. THz generation and detection on the technology of ultra-fast femto-second laser [J]. Acta, Photonics Sinica (光子学报), 2008, 37(S2): 1-5 (in Chinese). [14] Sun Bo, Yao Jian-quan. Generation of terahertz wave based on optical methods [J]. Chinese Journal of Lasers (中国激光), 2006, 33: 1349-1360 (in Chinese). [15] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams [J]. Appl. Phys. Lett., 1995, 67(24): 3523-3525. [16] Nahata A, Auston D, Heinz T, et al. Coherent detection of freely propagation terahertz radiation by electro-optic sampling [J]. Appl. Phys. Lett., 1996, 68(2): 150-152. [17] Jepsen P, Winnewisser C, Schall M, et al. Detection of THz pulses by phase retardation in lithium tantalite [J]. Phys. Rev. E, 1996, 53(4): 53-58. [18] Smith F, Le H, Diadiuk V, et al. Picosecond GaAs-based photoconductive optoelectronic detectors [J]. Appl. Phys. Lett., 1989, 54(10): 890-892. [19] Fattinger C, Grischkowsky D. Point sources terahertz optics [J]. Appl. Phys. Lett., 1989, 53(16): 1480-1482. [20] Jiang Z, Zhang X C. Electro-optic measurement of THz field pulse with a chirped optical beam [J]. Appl. Phys. Lett., 1998, 72(16): 1945-1947. [21] Shang J, Weling A, Knoesel E, et al. Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling [J] . Opt. Lett., 2000, 25(6): 426-428. [22] Steven J, Shen Jingling, Macleod A, et al. High-temporal-resolution, single-shot characterization of terahertz pulses [J]. Opt. Lett., 2003, 28(18):1710-1712. [23] Dai Jianming, Xie Xu, Zhang X C. Detection of broadband terahertz waves with a laser induced plasma in gas [J]. Phys. Rev. Lett., 2006, 97(10): 103903. [24] Karpowicz N, Dai Jianming, Lu Xiaofei, et al. Coherent heterodyne time-domain spectrometry coving the entire THz gap [J]. Appl. Phys. Lett., 2008, 92(1): 011131. [25] Becker E, Farrar T. Fourier Transform spectroscopy [J]. Science, 1972, 178: 361-368. [26] Chen Q, M. Tani, Jiang Zhiping, et al. Electro-optic transceivers for terahertz wave applications [J]. J. Opt. Soc. Am. B, 2001, 18(6): 823-831. [27] Wu Q, Zhang X C. 7 terahertz broadband GaP electro-optic sensor [J]. Appl. Phys. Lett., 1997, 70(14): 1784-1786. [28] Wu Q, Zhang X C. Ultrafast electro-optic field sensors [J]. Appl. Phys. Lett., 1996, 68(12): 1604-1606. [29] Dai Jianming, Liu Jingle, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induce gas plasma [J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(1): 183-190. [30] Dai Jianming, Clough B, Ho I-Chen, et al. Recent progress in terahertz wave air photonics [J]. IEEE Tran. On. Terahertz Science and Technology, 2011, 1(1): 274-281. [31] Sheng Zheng-Ming, Wu Hui-Chun, Wang Wei-Min, et al. Simulation of high power THz emission from laser interaction with tenuous plasma and a gas targets [J]. Commun. Comput. Phys., 2008, 4(5): 1258-1278. [32] Chin S L, Theberge F, Liu W. Filamentation nonlinear optics [J]. Appl. Phys. B, 2007, 86: 477-483. [33] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media [J]. Phys. Rep., 2007, 441: 47-189. [34] Auston D, Cheung K, Smith P. Picosecond photoconducting Hertzian dipoles [J]. Appl. Phys. Lett., 1984, 54(3): 284-286. [35] Smith P, Auston D, Nuss M. Subpicosecond photoconducting dipole antennas [J]. IEEE J. Quantum Electron., 1988, 24(2): 255-162. [36] Darrow J, Zhang X C, Auston D. Power scaling of large-aperture photoconducting antennas [J]. Appl. Phys. Lett., 1991, 58(1): 25-27. [37] Darrow J, Zhang X C, Auston D. Saturation properties of large aperture photoconducting antennas [J]. IEEE J. Quantum Electron., 1992, 28(6): 1607-1616. [38] Grischkowsky D, Keiding S, Exter M, et al. Far-infrared time domain spectrocopy with THz beams of dielectrics and semiconductors [J]. J. Opt. Soc. Am. B, 1990, 7(10): 2006-2015. [39] Tani M, Matsuura S, Sakai K, et al. Emission characteristics of photoconductive antennas based on low temperature grown GaAs and semi-insulating GaAs [J]. Appl. Opt., 1997, 36(30): 7853-7859. [40] Klatt G, Hilser F, Qiao W, et al. Terahertz emission from lateral photo-Dember currents [J]. Opt. Express, 2010, 18(5): 4939-4947. [41] Sun Hong-qi, Zhao Guo-zhong, Zhang Cun-lin, et al. The characteristics of terahertz radiation from InAs irradiated with femtosecond optical pulses of different wavelengths [J]. Acta Physica Sinica (物理学报), 2008, 57(2): 790-794 (in Chinese). [42] Reid M, Fedosejevs R. Terahertz emission from (100) InAs surfaces at high excitation fluencies [J]. Appl. Phys. Lett., 2005, 86(1): 011906. [43] Gu Ping, Tani M, Kono S, et al. Study of terahertz radiation from InAs and InSb [J]. J. Appl. Phys., 2002, 91(9): 5533-5538. [44] Heyman J, Neocleous P, Hebert D, et al. Terahertz emission from GaAs and InAs in a magnetic field [J]. Phys. Rev B, 2001, 64(8): 085202. [45] Xu L, Zhang X C, Auston D. THz beam generation by femtosecond optical pulse in electro-optic materials [J]. Appl. Phys. Lett., 1992, 61(15): 1784-17886. [46] Loffler T, Hahn T, Thomson M, et al. Large-area electro-optic ZnTe terahertz emitters [J]. Opt. Express, 2005, 13(14): 5353-5362. [47] Liu Rui, Gu Chun-ming, He Li-rong, et al. Generation of terahertz radiation via optical rectification and electro-optic detection in ZnTe crystals [J]. Acta Physica Sinica (物理学报), 2004, 53(4): 1217-1222 (in Chinese). [48] Zhang X C, Jin Y, Ma X F. Coherent measurement of THz optical rectification from electro-optic crystals [J]. Appl. Phys. Lett., 1992, 61(23): 2764-2766. [49] Hebling J, Stepanov A, Almasi G, et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts [J]. Appl. Phys. B, 2004, 78: 593-599. [50] Fulop J, Palfalvi L, Almasi G, et al. Design of high energy terahertz sources based on optical rectification [J]. Opt. Express, 2010, 18(12): 12311-12317. [51] Yeh K L, Hoffmann M, Hebling J, et al. Generation of 10 ?J ultrashort terahertz pulses by optical rectification [J].?Appl. Phys. Lett., 2007, 90(17): 171121. [52] Bakunov M, Bodrov S, Mashkovich E. Terahertz generation with tilted-front laser pulses: dynamics theory for low-absorbing crystals [J]. J. Opt. Soc. Am. B, 2011, 28(7): 1724-1734. [53] Hirori H, Doi A, Blanchard F, et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 [J]. Appl. Phys. Lett., 2011, 98(9): 091106. [54] Hamster H, Sullivan A, Gordon S, et al. Subpicosecond electromagnetic pulses from intense laser plasma interaction [J]. Phys. Rev. Lett., 1993, 71(17): 2725-2728. [55] Cook D, Hochstrasser R. Intense THz pulses by four wave rectification in air [J]. Opt. Lett., 2000, 25(16): 1210-1212. [56] Amico C, Houard A, Franco M, et al. Conical forward THz emission from femtosecond laser beam filamentation in air [J]. Phys. Rev. Lett., 2007, 98(23): 235002. [57] Xie Xu, Dai Jianming, Zhang X C. Coherent control of THz wave generation in ambient air [J]. Phys. Rev. Lett., 2006, 96(7): 075005. [58] Bartel T, Gaal P, Reimann K, et al. Generation of single cycle THz transients with high electric field amplitudes [J]. Opt. Lett., 2005, 30(20): 2805-2807. [59] Kim K, Glownia J, Taylor A, et al. THz emission from ultrafast ionizing air in symmetry-broken laser fields [J]. Opt. Express, 2007, 15(8): 4577-4584. [60] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases [J]. Phys. Rev. Lett., 2009, 102(9): 093001. [61] Dietze D, Darmo J, Roither S, et al. Polarization of THz radiation from laser generated plasma filaments [J]. J. Opt. Soc. Am. B, 2009, 26(11): 2016-2027. [62] Wen Haidan, Lindenberg A. Coherent terahertz polarization control through manipulation of electron trajectories [J]. Phys. Rev. Lett., 2009, 103(2): 023902. [63] Du H W, Peng X Y, Zhang K Y, et al. THz radiation from air plasma produced with aperture-limited two-color lasers [J]. Terahertz Science &Technology, 2011, 4: 46-49. [64] Karpowicz N, Lu Xiaofei, Zhang X C. Terahertz gas photonics [J]. J. Modern Optics, 2009, 56(10): 1137-1150. [65] Du H W, Chen M, Sheng Z M, et al. Numerical studies on terahertz radiation generated from two-color laser pulse interaction with gas targets [J]. Laser. Part. Beams, 2011, 29: 447-452. [66] Babushkin I, Kuehn W, Kohler C, et al. Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases [J]. Phys. Rev. Lett., 2010, 105(6): 053903. [67] Thomson M, Kre???, Loffler T, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications [J]. Laser &Photon. Rev. 2007, 1(5): 349-368. [68] Wang Tie-Jun, Chen Yanping, Marceau C, et al. High energy THz emission from two color laser induced filamentation in air with pump pulse duration control [J]. Appl. Phys. Lett., 2009, 95(13): 131108. [69] Blanchard F, Sharma G, Ropagnol X, et al. Improved terahertz two-color plasma sources pumped by high intensity laser beam [J]. Opt. Express, 2009, 17(8): 6044-????? [70] Peng Xiao-Yu, Li Chun, Chen Min, et al. Strong terahertz radiation from air plasmas generated by an aperture limited Gaussian pump laser beam [J]. Appl. Phys. Lett., 2009, 94(10): 101502. [71] Rodriguez G, Dakovski G. Scaling behavior of ultrafast two-color THz generation in plasma gas targets energy and pressure dependence [J]. Opt. Express, 2010, 18(14): 15130-15143. |
[1] | 吕海燕 , 洪占勇 , 杜先常 , . 单光子探测器制冷系统研究[J]. 量子电子学报, 2023, 40(3): 400-406. |
[2] | 张若雅 , 朱巧芬 , 张 岩 . 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报, 2023, 40(3): 301-318. |
[3] | 徐建伟 , 欧阳收剑 , 段守鑫 , 邹林儿 , 邓晓华 , 沈 云 , . 太赫兹平面环偶极子超材料传感器及地沟油检测[J]. 量子电子学报, 2023, 40(3): 333-339. |
[4] | 陈启明, 傅仁轩, 徐勇军, 刘益标, 周金运, 宋显文. 移动焦平面正反面曝光制备 SU-8 微结构及 PDMS 浓度梯度产生器[J]. 量子电子学报, 2023, 40(3): 415-422. |
[5] | 潘晓凯 , 姜梦杰, , 王 东, , 吕旭阳, , 蓝诗琪 , , 卫英东 , , 何 源, , 郭书广, , 陈平平 , 王 林∗ , 陈效双 , 陆 卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217-237. |
[6] | 董秦鲁, 韩一平∗ , 张启凡. 太赫兹波在高超声速目标等离子体 鞘套中的传输特性[J]. 量子电子学报, 2023, 40(2): 258-266. |
[7] | 姚柏志 , 石粒力 , 吴敬波, , 陈 健 , ∗ , 吴培亨 , . 极低温下高灵敏太赫兹探测阵列的信号读出[J]. 量子电子学报, 2023, 40(2): 267-274. |
[8] | 汪辰宇♯ , 廖 宇♯ , 梅志杰, 刘旭东, 孙怡雯∗. 基于 GaAs 表面等离子体栅阵结构 的太赫兹调制器[J]. 量子电子学报, 2023, 40(2): 275-281. |
[9] | 吴仍来∗, 余亚斌, 肖世发, 全军. 单层原子的厚度对等离激元色散关系的修正[J]. 量子电子学报, 2022, 39(4): 541-548. |
[10] | 王洋, 李新∗, 黄雄豪, 刘恩超, 张艳娜. 太阳光谱辐照度仪波长扫描设计[J]. 量子电子学报, 2022, 39(4): 519-530. |
[11] | 孟维利∗, 王晴晴, 邵静, 程宏伟, 宫昊. 石墨烯基杂化聚合物太阳能电池中光活性层 组成对器件性能的影响[J]. 量子电子学报, 2022, 39(4): 613-619. |
[12] | 张立∗, 王琦. 三角形截面GaN 纳米线中的Fr¨ohlich 电子-声子相互作用哈密顿[J]. 量子电子学报, 2022, 39(4): 632-643. |
[13] | 许文昊, 寿一畅, 罗海陆. 光的自旋-轨道相互作用[J]. 量子电子学报, 2022, 39(2): 159-181. |
[14] | 裴志成, 丁朝华∗, 耿艳波, 肖景林. 单层过渡金属硫族化合物中弱耦合极化子的磁场效应[J]. 量子电子学报, 2021, 38(4): 539-544. |
[15] | 郑丽君 刘春娟 汪再兴 孙霞霞 刘晓忠. 6H-SiC基 MPS二极管正向双势垒特性研究[J]. 量子电子学报, 2021, 38(1): 99-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||