J4 ›› 2015, Vol. 32 ›› Issue (3): 270-277.

• 图像与信息处理 • 上一篇    下一篇

利用快速加权PCA检测遮挡区域的人脸识别

乔蕊,李靖   

  1. 周口师范学院计算机科学与技术学院,河南 周口,466001
  • 收稿日期:2015-01-16 修回日期:2015-04-04 出版日期:2015-05-28 发布日期:2015-05-28
  • 通讯作者: 乔蕊(1983- ),女,河南周口人,讲师,硕士,从事图像处理、传感器网络等研究. E-mail:qiaoruizknu@126.com;
  • 基金资助:

    河南省软科学研究项目(132400411253, 142400411030)

Robust Face Recognition by Using FW-PCA Detecting Occluded Region

QIAO Rui, LI Jing   

  1. School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China
  • Received:2015-01-16 Revised:2015-04-04 Published:2015-05-28 Online:2015-05-28

摘要:

针对人脸识别中存在遮挡而影响识别性能的问题,提出了一种利用快速加权PCA检测遮挡区域的鲁棒人脸识别算法。首先,利用快速加权PCA检测输入图像的遮挡区域,将其与图库图像的遮挡区域进行比较;然后,利用局部二值模式匹配确定最优权重系数,利用相位相关算法匹配确定遮挡掩码;最后,计算每个测试图像的匹配得分,并利用最近邻分类器完成人脸识别。在FRGC2和UND人脸库上的实验结果表明,本文算法的识别率可高达99.6%,相比其他几种较新的人脸识别算法,本文算法取得了更好的识别性能。

关键词: 图像处理, 人脸识别, 遮挡区域检测, 快速加权PCA, 相位相关算法, 局部二值模式

Abstract:

For the issue that performance of face recognition algorithms is impacted by occlusion, a robust face recognition algorithm by using FW-PCA detecting occluded region is proposed. Firstly, FW-PCA is used to detect occluded region, and occluded region of input images are compared with gallery images. Then, LBP is used to determine the optimal weights and POC is used to get occluded mask. Finally, matching score of each image is calculated, face recognition is finished by nearest neighbor classifier. Experimental results on FRGC2 and UND show that the recognition accuracy can achieve at 99.6%. It has better recognition performance than several advanced recognition algorithms.

Key words: Image processing, Face recognition, Occluded Region Detecting, Fast-Weighted Principal Component Analysis, Phase-Only Correlation, Local Binary Pattern

中图分类号: