J4 ›› 2015, Vol. 32 ›› Issue (4): 391-398.

• 图像与信息处理 • 上一篇    下一篇

基于空间约束高斯混合模型的EPLL自然图像复原

廖斌,刘鸳鸳   

  1. 湖北大学计算机与信息工程学院,湖北 武汉430062
  • 收稿日期:2014-08-26 修回日期:2014-09-28 出版日期:2015-07-28 发布日期:2015-08-04
  • 通讯作者: 廖斌(1979-),湖北人,副教授,博士,从事计算机图像视频处理的研究. E-mail:bliao@hubu.edu.cn
  • 基金资助:

    国家自然科学基金资助(61300125)

EPLL based Natural Image Restoration using Spatially Constrained Gaussian Mixture Model

Liao Bin, Liu Yuanyuan   

  1. School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
  • Received:2014-08-26 Revised:2014-09-28 Published:2015-07-28 Online:2015-08-04

摘要:

为了提高基于块先验的自然图像复原效果,有效去除图像中的噪声和模糊,提出了一种基于空间约束高斯混合模型的块似然对数期望(Expected Patch Log Likelihood, EPLL)复原框架。基于图像块的空间分布信息,将图像块的空间约束高斯混合统计特性作为先验,在图像块复原的基础上实现整幅图像的全局优化复原。对比相关的图像复原方法,提出的方法去噪和去模糊效果更好,并且保图像细节。利用客观性能指标对复原结果进行评价。实验结果表明,提出的方法有效易行,而且复原图像表现出良好的可视效果。

关键词: 图像处理, 图像复原, 空间约束高斯混合模型, 先验, 块似然对数期望

Abstract:

In order to improve the performance of patch prior based natural image restoration, effectively remove the noise and blur of images, a restoration framework of Expected Patch Log Likelihood (EPLL) using spatially constrained gauss mixture model was presented. Based on the spatial distribution information of patches, the spatially constrained gauss mixture statistical characteristics of image patches were as the priors to reach image patch restoration. Image restoration was realized based on the global optimization of image patch restoration. Compared with related works, the proposed method performed better in image denoising and deblurring, and preserved details. The performance of the restoration results was evaluated by the objective indicator. The experimental results show that the proposed method is effective and the visual effect of the image restoration is pleased.

Key words: image processing, image restoration, spatially constrained gaussian mixture model, prior, EPLL