[1] Xia D Y, Zhang J Y, He X, et al. Fabrication of three-dimensional photonic crystal structures by interferometric lithography and nanoparticle self-assembly [J]. Applied Physics Letters, 2008, 93 (11): 071105. [2] Zheng M, Yu M, Liu Y, et al. Magnetic nanodot arrays produced by direct laser interference lithography [J]. Applied Physics Letters, 2001, 79 (6): 2606-2608. [3] Manfrinato V R, Zhang L H, Su D, et al. Resolution limits of electron-beam lithography toward the atomic scale [J]. Nano Letters, 2013, 13 (4): 1555-1558. [4] Park J H, Steingart D A, Kodambaka S, et al. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand [J]. Science Advances, 2017, 3 (7): e1700234. [5] Schroder T, Trusheim M E, Walsh M, et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures [J]. Nature Communications, 2017, 8: 15376. [6] Naik J P, Das K, Prewett P D, et al. Liquid-like instabilities in gold nanowires fabricated by focused ion beam lithography [J]. Applied Physics Letters, 2012, 101: 163108. [7] Xing J. F, Dong X. Z, Chen W. Q, et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency [J]. Applied Physics Letters, 2007, 90: 131106. [8] Dong X. Z, Zhao Z. S, Duan X. M, et al. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication [J]. Applied Physics Letters, 2008, 92: 091113. [9] Xing J F, Zheng M. L, Duan X M. Two-photon polymerization microfabrication ofhydrogels: an advanced 3D printing technology for tissue engineering and drug delivery [J]. Chem. Soc. Rev. 2015, 44: 5031-5039. [10] Zhao Y Y, Zhang Y. L, Zheng M. L, et al. Three-dimensional Luneburg lens at optical frequencies [J]. Laser Photonics Reviews, 2016, 10 (4): 665-672. [11] Sun C, Fang N, Wu D M, Zhang X. Projection micro-stereolithography using digital micro-mirror dynamic mask [J]. Sensor. and Actuat. A, 2005, 1 (31): 113-120. [12] Lee M P, Cooper G J T, Hinkley T, et al. Development of a 3D printer using scanning projection stereolithography [J]. Scientific Reports, 2015, 5: 9857. [13] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system [J]. Scientific Reports, 2014, 4: 5834. [14] Zhang A. P, Qu X, Soman P, et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography [J]. Adv. Mater, 2012, 24 (31): 4266-4270. [15] Borzenko T, Fries P, Schmidt G, et al. A process for the fabrication of large areas of high resolution, high aspect ratio silicon structures using a negative tone Novolak based e-beam resist [J]. Microelectronic Engineering, 2009, 86: 726-729. |