量子电子学报 ›› 2019, Vol. 36 ›› Issue (6): 699-704.

• 图像与信息处理 • 上一篇    下一篇

基于光学灰度图像辨识的系统故障诊断方法

汪炜怡1,徐青山2,杨明翰3   

  1. 1中国科学院安徽光学精密机械研究所基础科学中心,安徽 合肥 230031;
    2中国科学技术大学研究生院科学岛分院,安徽 合肥 230026;
    3中国科学院核能安全技术研究所,安徽 合肥 230031

  • 收稿日期:2018-12-24 修回日期:2019-03-01 出版日期:2019-11-28 发布日期:2019-11-19
  • 通讯作者: 徐青山(1965-),男,研究员,主要从事大气探测、辐射传输、卫星遥感与图像大气订正方面的研究。Email:qshxu@aiofm.ac.cn E-mail:minghan.yang@fds.org.cn
  • 作者简介:汪炜怡(1993-),女,安徽合肥人,博士生,主要从事人工智能以及大数据处理方面的研究。E-mail:wywangjoy@163.com
  • 基金资助:
    Supported by Strategic Priority Research Program ofChinese Academy of Sciences(中国科学院战略性先导科技专项资助项目, XDA03040000)

Method of System Fault Diagnosis based on Optical Gray-Image recognition

WANG Weiyi12,XU Qingshan1,YANG Minghan3*   

  1. 1Center of Fundametal Science, Anhui Institute of Optics and Fine Mechanics,Chinese Academy ofSciences, Heifei 230031, China;
    2 Science Island Branch of Graduate School, University of Science and Technology of China, Heifei 230026, China;
    3 Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences,Heifei 230031, China
  • Received:2018-12-24 Revised:2019-03-01 Published:2019-11-28 Online:2019-11-19

摘要:
摘要: 故障诊断系统已成为确保工业系统及设备安全运行的重要辅助工具。在故障发生的早期阶段,故障诊断系统可以快速提供早期预警信息,并为故障缓解方案制定提供参考。为此,提出了一种基于光学灰度图像辨识的故障诊断方法。该方法根据实时监测数据构造系统的运行状态图像,通过CCD摄录的方式截取灰度图像,并从不同分辨率的系统灰度图像近似直方图中提取出系统的灰度图像特征。根据这些特征与标准特征之间的欧式距离比较,将当前状态划分为相距最小的标准特征类。实验结果表明该方法能够快速且正确地检测出故障类型,为系统相关设计与维护人员提供有效的支持信息。


关键词: 图像处理, 故障诊断, 灰度图像, 欧氏距离

Abstract: Fault diagnosis systems have become an important aid to ensure the safe operation of industrial systems and equipments. In the early stages of the failure, the fault diagnosis system can quickly provide early warning information and provide reference for the development of the fault mitigation plan. For this purpose, a fault diagnosis method based on optical gray image recognition is proposed. The method constructs the running state image of the system according to the real-time monitoring data, intercepts the gray image by CCD recording, and extracts the gray image from different resolution systems. The grayscale image features of the system are extracted from the approximate histogram. Based on the Euclidean distance between these features and the standard features, the current state is divided into the standard feature classes with the smallest distance. The experimental results show that the method can detect the fault type quickly and correctly, and can provide effective support information for the system related design and maintenance personnel.

Key words: image processing, fault diagnosis, gray image, Euclidean distance

e

中图分类号: