量子电子学报 ›› 2021, Vol. 38 ›› Issue (1): 108-115.

• 半导体光电 • 上一篇    下一篇

掺杂对新型二维材料磷烯光电性质的影响

张忠政1;3, 张春红1;3, 闫万珺2;3, 覃信茂2;3   

  1. 1 安顺学院数理学院, 贵州安顺561000; 2 安顺学院电子与信息工程学院, 贵州安顺561000; 3 安顺学院航空电子电气与信息网络工程中心, 贵州安顺561000
  • 收稿日期:2020-05-07 修回日期:2020-07-12 出版日期:2021-01-28 发布日期:2021-02-01
  • 作者简介:张忠政( 1982 - ), 山东滕州人, 硕士, 副教授, 主要从事光电子材料计算方面的研究。E-mail: zzz8292@163.com
  • 基金资助:
    Supported by the Joint Science and Technology Fund of Guizhou Provincial Department of Science and Technology, Anshun Municipal Government, Anshun University (贵州省科学技术厅, 安顺市人民政府, 安顺学院联合科技基金资助项目, 黔科合LH 字(2017) 7042 号), Anshun University School-Level Discipline Platform Project (安顺学院校级学科平台项目, Asxyxkpt201803)

Influence of doping on photoelectric properties of new two-dimensional material phosphorene

ZHANG Zhongzheng1;3, ZHANG Chunhong1;3, YAN Wanjun2;3, QIN Xinmao2;3   

  1. 1 School of Mathematics and Physics, Anshun University, Anshun 561000, China; 2 School of Electronic and Information Engineering, Anshun University, Anshun 561000, China; 3 Avionics and Information Network Engineering Center, Anshun University, Anshun 561000, China
  • Received:2020-05-07 Revised:2020-07-12 Published:2021-01-28 Online:2021-02-01

摘要: 利用第一性原理赝势平面波方法计算了杂质(X=C, Al) 掺杂新型二维材料磷烯的结构参数、能带结 构、Mulliken 布居分析、差分电荷密度以及光学性质。结果表明杂质掺杂后磷烯材料的结构发生了畸变, 但是 掺杂体系的结构是稳定的。C 掺杂后, 费米能级进入价带中, 带隙变窄, 变为0.826 eV 的直接带隙; Al 掺杂后, 体 系变为间接带隙半导体, 带隙略有展宽, 带隙为0.965 eV。Mulliken 布居分析和差分电荷密度的分析都表明掺杂 后体系的电荷分布发生了转移, C 原子附近出现了电荷积累, 而Al 原子附近出现了电荷消耗。在(1 0 0) 极化方 向上的光学性质计算表明: 在红光及红外线的范围内, C 掺杂后磷烯材料储存电磁能的能力有所减弱, 而Al 掺杂 后储存电磁能的能力有所增强; C 掺杂后折射率n0 减小, Al 掺杂后折射率n0 增大; 吸收系数和反射率峰值均降 低; 掺杂前后磷烯材料都可作为光储存材料。以上结果说明采用不同杂质掺杂可以调制磷烯材料的光电性质。

关键词: 材料, 光电性质, 掺杂, 磷烯

Abstract: The first-principles pseudo-potential plane wave method is used to calculate the geometric structure, band structure, Mulliken population analysis, differential charge density and optical properties of the new two-dimensional material phosphorene doped with impurities (X=C, Al). Results show that the phosphorene structure is distorted after impurity doping, but structure of the doping system is stable. After C doped, the Fermi energy level enters the valence band, the band gap becomes narrower and it becomes a direct band gap of 0.826 eV. After Al doped, the system becomes an indirect band gap semiconductor with a slightly widened band gap of 0.965 eV. Both Mulliken population analysis and differential charge density analysis show that the charge distribution of the system shifts after doping, charge accumulation occurs near C atom, and charge consumption occurs near Al atom. The optical properties in the (1 0 0) polarization direction are calculated. In the range of red light and infrared light, the capacity of phosphorene material to store electromagnetic energy is reduced after C doped, and the capacity to store electromagnetic energy is enhanced after Al doped. The refractive index n0 decreases after C doped, while the refractive index n0 increases after Al doped. The peaks of absorption coefficient and reflectivity decrease. The phosphorene materials can be used as light storage materials before and after doped. The above results indicate that the photoelectric properties of the phosphorene material can be modulated by C and Al doped according to actual needs.

Key words: materials, photoelectric properties, doping, phosphorene

中图分类号: