[1] Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, L. P. Quantum electrodynamics[M], 2nd edn. Oxford: Pergamon Press,1982: 16-29.[2] Mathur H. Thomas precession, spin-orbit interaction, and Berry’s phase[J]. Physical Review Letters, 1991, 67(24): 3325.[3] Rashba E I, Sherman E Y. Spin-orbital band splitting in symmetric quantum wells[J]. Physics Letters A, 1988, 129(3): 175-179.[4] Shen S Q, Ma M, Xie X C, et al. Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field[J]. Physical review letters, 2004, 92(25): 256603. [5] Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect[J]. Physical review letters, 2004, 92(12): 126603.[6] Bérard A, Mohrbach H. Spin Hall effect and Berry phase of spinning particles[J]. Physics Letters A, 2006, 352(3): 190-195.[7] Rashba E I. Spin-orbit coupling and spin transport[J]. Physica E: Low-dimensional Systems and Nanostructures, 2006, 34(1-2): 31-35.[8] Andrews D L, Babiker, M. The Angular Momentum of Light [M], Cambridge University Press, 2013:174-245.[9] Dooghin A V, Kundikova N D, Liberman V S, et al. Optical magnus effect [J]. Physical Review A, 1992, 45(11): 8204. [10] Darsht M Y. B. Ya. Zel dovich, IV Katayevskaya, ND Kundikova[J]. Journ. of Theor. and Experim. Phys, 1995, 107(5): 1464-1472.[11] Liberman V S, Zel’dovich B Y. Spin-orbit interaction of a photon in an inhomogeneous medium[J]. Physical Review A, 1992, 46(8): 5199.[12] Baranova N B, Savchenko A Y, Zel'Dovich B Y. Transverse shift of a focal spot due to switching of the sign of circular polarization[J]. Soviet Journal of Experimental and Theoretical Physics Letters, 1994, 59: 232. [13] Zel' Dovich B Y, Kundikova N D, Rogacheva L F. Obsevation transverse shift of a focal spot upon a change in the sign of circular polarization[J]. ZhETF Pisma Redaktsiiu, 1994, 59: 737. [14] F. I. Fedorov, To the theory of total reflection [J]. Dokl. Akad. Nauk SSSR 105(3): 465 (1955).[15] Imbert C. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam[J]. Physical Review D, 1972, 5(4): 787.[16] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical review letters, 2004, 93(8): 083901. [17] Bliokh K Y, Bliokh Y P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet[J]. Physical review letters, 2006, 96(7): 073903.[18] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 2008, 319(5864): 787-790. [19] Bliokh K Y, Rodriguez-Fouruno F J, Nori F, et al. Spin-interactions of light [J]. Nature Photonics, 2015, 9(12): 796-808. [20] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560-567.[21] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115.[22] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical review A, 1992, 45(11): 8185.[23] Franke‐Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.[24] Bliokh K Y, Niv A, Kleiner V, et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2008, 2(12): 748-753. [25] Bomzon Z, Gu M, Shamir J. Angular momentum and geometrical phases in tight-focused circularly polarized plane waves[J]. Applied physics Letters, 2006, 89(24): 241104.[26] Zhao Y, Edgar J S, Jeffries G D M, et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters, 2007, 99(7): 073901. [27] Schwartz C, Dogariu A. Conservation of angular momentum of light in single scattering[J]. Optics Express, 2006, 14(18): 8425-8433. [28] Haefner D, Sukhov S, Dogariu A. Spin Hall effect of light in spherical geometry[J]. Physical Review Letters, 2009, 102(12): 123903. [29] Rodriguez-Herrera O G, Lara D, Bliokh K Y, et al. Optical nanoprobing via spin-orbit interaction of light[J]. Physical Review Letters, 2010, 104(25): 253601.[30] Bliokh K Y, Ostrovskaya E A, Alonso M A, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 2011, 19(27): 26132-26149.[31] Hasman E, Biener G, Niv A, et al. Space-variant polarization manipulation[J]. Progress in Optics, 2005, 47: 215-289.[32] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.[33] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical review Letters, 2006, 96(16): 163905.[34] Yin X, Ye Z, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.[35] Ling X, Zhou X, Huang K, et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics 2017, 80 (6): 066401.[36] Ling X, Zhou X, Yi X, et al., Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light: Science & Applications 2015, 4 (5): e290.[37] Qin Y, Li Y, He H, et al. Measurement of spin Hall effect of reflected light[J]. Optics Letters, 2009, 34(17): 2551-2553.[38] Luo H, Zhou X, Shu W, et al. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection[J]. Physical Review A, 2011, 84(4): 043806.[39] Zhou X, Xiao Z, Luo H, et al. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements[J]. Physical Review A, 2012, 85(4): 043809.[40] Zhou X, Ling X, Luo H, et al. Identifying graphene layers via spin Hall effect of light[J]. Applied Physics Letters, 2012, 101(25): 251602. [41] Chen S, Ling X, Shu W, et al. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect[J]. Physical Review Applied, 2020, 13(1): 014057.[42] Chen S, Zhou X, Ling X, et al. Measurement of the optical constants of monolayer MoS2 via the photonic spin Hall effect[J]. Applied Physics Letters, 2021, 118(11): 111104.[43] Wang R, Zhou J, Zeng K, et al. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect[J]. APL Photonics, 2020, 5(1): 016105.[44] Q. Zhan, Adv. Opt. Photon. Cylindrical vector beams: from mathematical concepts to applications [J]. 2009,1(1): 1-57.[45] He Y, Liu Z, Liu Y, et al. High-order laser mode convertor with dielectric metasurfaces[J]. Opt. Lett. 2015 40 (23): 5506-5509.[46] M. J. Padgett and J. Courtial, Poincar′e-sphere equivalent for light beams containing orbital angular momentum[J]. Opt. Lett. 1999, 24(7):430-432.[47] G. Milione, H. I. Sztul, D. A. Nolan, et al. Higher-order Poincare sphere, stokes parameters, and the angular momentum of light[J]. Phys Rev Lett 2011, 107(5):053601.[48] Liu Y, Ling X, Yi X, et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface[J]. Applied Physics Letters, 2014, 104(19): 191110.[49] Yi X, Liu Y, Ling X, et al. Hybrid-order Poincare sphere[J], Phys. Rev. A 2015, 91(2): 023801.[50] Liu Z, Liu Y, Ke Y, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 2017, 5(1): 15-21.[51] Zhu T, Lou Y, Zhou Y, et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection[J]. Physical Review Applied, 2019, 11(3): 034043.[52] Zhou J, Qian H, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences, 2019, 116(23): 11137-11140.[53] Zhou J, Qian H, Zhao J, et al. Two-dimensional optical spatial differentiation and high-contrast imaging[J]. National Science Review, 2021, 8(6): nwaa176.[54] Zhou J, Liu S, Qian H, et al. Metasurface enabled quantum edge detection[J]. Science Advances, 2020, 6(51): eabc4385. |