量子电子学报 ›› 2023, Vol. 40 ›› Issue (3): 301-318.doi: 10.3969/j.issn.1007-5461.2023.03.002
• “太赫兹物理、器件与应用”专辑 II • 上一篇 下一篇
张若雅 1, 朱巧芬 1*, 张 岩 2*
收稿日期:
2022-09-28
修回日期:
2022-10-28
出版日期:
2023-05-28
发布日期:
2023-05-28
通讯作者:
E-mail: zhuqiaofen@hebeu.edu.cn; yzhang@cnu.edu.cn
E-mail:E-mail: zhuqiaofen@hebeu.edu.cn; yzhang@cnu.edu.cn
作者简介:
张若雅( 1997 - ), 女, 河北唐山人, 研究生, 主要从事衍射光学元器件设计方面的研究。E-mail: zh_ang_97@163.com
基金资助:
ZHANG Ruoya 1 , ZHU Qiaofen 1*, ZHANG Yan 2*
Received:
2022-09-28
Revised:
2022-10-28
Published:
2023-05-28
Online:
2023-05-28
摘要: 太赫兹超材料吸波器具有吸收强、厚度薄、质量轻等优点, 已被广泛应用于隐身材料、频率选择表面、太赫兹 成像、通信传感等方面。但是, 基于金属结构的传统太赫兹超材料吸波器一旦完成加工后, 它的吸收性能是固定不变 的。为解决这一问题, 研究人员通过引入活性超材料设计了可调谐太赫兹超材料吸波器。结合可调谐太赫兹超材料 吸波器的国内外研究现状, 分类阐述了几类典型的可调谐太赫兹超材料吸波器, 重点对单频带、多频带、宽频带以及 可切换双功能太赫兹超材料吸波器的相关研究工作进行了梳理与总结, 并对其未来发展趋势进行了分析。
中图分类号:
张若雅 , 朱巧芬 , 张 岩 . 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报, 2023, 40(3): 301-318.
ZHANG Ruoya , ZHU Qiaofen , ZHANG Yan . Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318.
[1].参考文献: [2]Siegel P H.Terahertz Technology[J].IEEE T Microw Theory, 2002, 50(3):910-928 [3]Masayoshi T.Cutting-edge THz technology [J]. Nat Photonics, 2007, 1: 97-105. [4]Fang P P, Shi X W, Liu C, et al.Single- and dual-band convertible terahertz absorber based on bulk Dirac semimetal [J]. Opt Commun, 2020, 462: 125333. [5]Zhao Y T, Wu B, Huang B J, et al.Switchable broadband terahertz absorberreflector enabled by hybrid graphene-gold metasurface[J].Opt Express, 2017, 25(7):7161-7169 [6]Wang J L, Zhang B Z, Wang X, et al.Flexible dual-band band-stop metamaterials filter for the terahertz region[J].Opt Mater Express, 2017, 7(5):1656-1665 [7]Zhou X T, Yin X, Zhang T, et al.Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide[J].Opt Express, 2015, 23(9):11657-11664 [8]Andrey K K, Grigory I K, Ekaterina V T, et al.Terahertz polarization conversion with quartz waveplate sets[J].Appl Optics, 2013, 52(4):B60-B69 [9]Luo S W, Lin B, Yu A L, et al.Broadband tunable terahertz polarization converter based on graphene metamaterial [J]. Opt Commun, 2018, 413: 184-189. [10]Pendry J B, Holden A J, Robbins D J, et al.Magnetism from conductors,and enhanced non-linear phenomena[J].IEEE T Microw Theory, 1999, 47(11):2075-2084 [11]Smith D R, Padilla W J, Vier D C, et al.Composite medium with simultaneously negative permeability and permittivity[J].Phys Rev Lett, 2000, 84(18):4184-4187 [12]Shelby R A, Smith D R, Schultz S.Experimental verification of a negative index of refraction[J].Science, 2001, 292(5514):77-79 [13]Landy N I, Sajuyigbe S, Mock J J, et al.Perfect metamaterial absorber[J].Phys Rev Lett, 2008, 100(20):279-282 [14]Hu T, Landy N I, Bingham C M, et al.A metamaterial absorber for the terahertz regime: Design,fabrication and characterization[J].Opt Express, 2008, 16(10):7181-7188 [15]Pan M, Huang H Z, Fan B D, et al.Theoretical design of a triple-band perfect metamaterial absorber based on graphene with wide-angle insensitivity [J]. Results Phys, 2021, 23: 104037. [16]周维, 陈骏, 李豪, 谢林峰等.太赫兹电磁超材料完美吸收器的研究进展[J].激光与光电子学进展, 2022, 59(11):96-108 [17]Chen H T.Interference theory of metamaterial perfect absorbers[J].Opt Express, 2012, 20(7):7165-7172 [18]Hu T, Bingham C M, Strikwerda A C, et al.Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization [J]. Phys Rev B, 2008, 78: 241103. [19]Wang B X, Zhai X, Wang G Z, et al.Design of a four-band and polarization insensitive terahertz metamaterial absorber[J].IEEE Photonics J, 2014, 7(1):1-8 [20]Liu G D, Zhai X, Meng H Y, et al.Dirac semimetals based tunable narrowband absorber at terahertz frequencies[J].Opt Express, 2018, 26(9):11471-11480 [21]Huang X, Yang F, Gao B, et al.Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime[J].Opt Express, 2019, 27(18):25902-25911 [22]Yang D X, Li J S.Tunable all-graphene-dielectric single-band terahertz wave absorber [J]. J Phys D Appl Phys, 2019, 52: 275102. [23]Chen M, Chen C, Deng S J, et al.Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals[J].OSA Continuum, 2019, 2(8):2477-2486 [24]Xiong H, Shen Q.Thermally and electrically dual-tunable absorber based on Dirac semimetal and strontium titanate [J]. Nanoscale, 2020, 12: 14598-14604. [25]Huang X, He W, Yang F, et al.Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime[J].Opt Mater Express, 2019, 9(3):1377-1385 [26]Deng G S, Xia T Y, Jing S C, et al.A tunable metamaterial absorber based on liquid crystal intended for f frequency band [J]. IEEE Antenn Wirel Pr, 2017, 16: 2062-2065. [27]Zheng W, Li W, Chang S J.A thermally tunable terahertz metamaterial absorber[J].Optoelectronics Letters, 2015, 11(1):0018-0021 [28]Cheng Y Z, Gong R Z, Zhao J C.A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves [J]. Opt Mater, 2016, 62: 18-23. [29]Wang T L, Cao M Y, Zhang H Y, et al.Tunable terahertz metamaterial absorber based on Dirac semimetal films[J].Appl Optics, 2018, 57(32):9555-9561 [30]Xiong H, Peng Y H, Yang F, et al.Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal[J].Opt Express, 2020, 28(10):15744-15752 [31]Zhong M, Jiang X T, Zhu X L, et al.Design and fabrication of a single metal layer tunable metamaterial absorber in THz range [J]. Opt Laser Technol, 2020, 125: 106023. [32]Chen M, Sun W, Cai J J, et al.Frequency-tunable terahertz absorbers based on graphene metasurface [J]. Opt Commun, 2017, 382: 144-150. [33]Zhang Y, Lv J, Que L C, et al.A double-band tunable perfect terahertz metamaterial absorber based on Dirac semimetals [J]. Results Phys, 2019, 15: 102773. [34]Wang F L, Huang S, Li L, et al.Dual-band tunable perfect metamaterial absorber based on graphene[J].Appl Opt, 2018, 57(24):6916-6922 [35]Li Z X, Wang T L, Qu L F, et al.Design of bi-tunable triple-band metamaterial absorber based on Dirac semimetal and vanadium dioxide[J].Opt Mater Express, 2020, 10(8):1941-1950 [36]Li W Y, Cheng Y Z.Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure [J]. Opt Commun, 2020, 462: 125265. [37]Yin Z P, Lu Y J, Xia T Y, et al.Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal [J]. RSC Adv, 2018, 8: 4197-4203. [38]Yao G, Ling F R, Yue J, et al.Dual-band tunable perfect metamaterial absorber in the THz range[J].Opt Express, 2016, 24(2):1518-1527 [39]Xing R, Jian S S.A dual-band THz absorber based on graphene sheet and ribbons [J]. Opt Laser Technol, 2018, 100: 129-130. [40]Meng W W, Que L C, Lv J, et al.A triple-band terahertz metamaterial absorber based on buck Dirac semimetals [J]. Results Phys, 2019, 14: 102461. [41]Li J S, Sun J Z.Umbrella-shaped graphene/Si for multi?band tunable terahertz absorber [J]. Appl Phys B-Lasers O, 2019, 125: 183. [42]Fan C Z, Tian Y C, Ren P W, et al.Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials[J].Chinese Phys B, 2019, 28(7):076105- [43]Luo J, Lin Q, Wang L L, et al.Ultrasensitive tunable terahertz sensor based on five-band perfect absorber with Dirac semimetal[J].Opt Express, 2019, 27(15):20165-20176 [44]Xu K D, Li J X, Zhang A X, et al.Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips[J].Opt Express, 2020, 28(8):11482-11492 [45]Zhang B H, Qi Y P, Zhang T, et al.Tunable multi-band terahertz absorber based on composite graphene structures with square ring and Jerusalem cross [J]. Results Phys, 2021, 25: 104233. [46]Wang R Z, Li L, Liu J L, et al.Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal[J].Opt Express, 2017, 25(26):32280-32289 [47]Xu Z C, Gao R M, Ding C F, et al.Photoexited switchable metamaterial absorber at terahertz frequencies [J]. Opt Commun, 2015, 344: 125-128. [48]Jia Y L, Yin H Y, Yao H W, et al.Realization of multi-band perfect absorber in graphene based metal-insulator-metal metamaterials [J]. Results Phys, 2021, 25: 104301. [49]Bao Z Y, Wang J C, Hu Z D, et al.Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J].Opt Express, 2019, 27(22):31435-31445 [50]Song Z Y, Wang K, Li J W, et al.Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J].Opt Express, 2018, 26(6):7148-7154 [51]Mou N L, Sun S L, Dong H X, et al.Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J].Opt Express, 2018, 26(9):11728-11736 [52]Wu T, Shao Y B, Ma S, et al.Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate[J].Opt Express, 2021, 29(5):7713-7723 [53]Feng H, Xu Z X, Li K, et al.Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials[J].Opt Express, 2021, 29(5):7158-7164 [54]Xiao B G, Gu M Y, Xiao S S.Broadband,wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays[J].Appl Optics, 2017, 56(19):5458-5462 [55]Li H, Yu J.Active dual-tunable broadband absorber based on a hybrid graphene-vanadium dioxide metamaterial[J].OSA Continuum, 2020, 3(8):2143-2155 [56]Xiong H, Shen Q, Ji Q.Broadband dynamically tunable terahertz absorber based on a Dirac semimetal[J].Appl Optics, 2020, 59(16):4970-4976 [57]Zhang R Y, Luo Y H, Xu J K.Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption[J].Opt Express, 2021, 29(26):42989-42998 [58]Xiong H, Ji Q, Bashir T, et al.Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal[J].Opt Express, 2020, 28(9):13884-13894 [59]Wang S X, Cai C F, You M G, et al.Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study[J].Opt Express, 2019, 27(14):19436-19447 [60]Dao R N, Kong X R, Zhang H F, et al.A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide [J]. Optik, 2019, 180: 619-625. [61]Bai J J, Zhang S S, Fan F, et al.Tunable broadband THz absorber using vanadium dioxide metamaterials [J]. Opt Commun, 2019, 452: 292-295. [62]Ye L P, Chen Y, Cai G X, et al.Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range[J].Opt Express, 2017, 25(10):11223-11232 [63]Huang X, He W, Yang F, et al.Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J].Opt Express, 2018, 26(20):25558-25566 [64]Xu J, Qin Z J, Chen M, et al.Broadband tunable perfect absorber with high absorptivity based on double layer graphene[J].Opt Mater Express, 2021, 11(10):3398-3410 [65]Song Z Y, Jiang M W, Deng Y D, et al.Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material [J]. Opt Commun, 2020, 464: 125494. [66]Han J Z, Chen R S.Tunable broadband terahertz absorber based on a single-layer graphene metasurface[J].Opt Express, 2020, 28(20):30289-30298 [67]Huang J, Li J N, Yang Y, et al.Broadband terahertz absorber with a flexible,reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J].Opt Express, 2020, 28(12):17832-17840 [68]Wu G Z, Jiao X F, Wang Y D, et al.Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide[J].Opt Express, 2021, 29(2):2703-2711 [69]Li Y L, Gao W, Guo L, et al.Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial[J].Opt Express, 2021, 29(25):41222-41233 [70]Huang J, Li J N, Yang Y, et al.Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide [J]. Opt Express, 20200, 28(5): 7018-7027. [71]Zhao Y, Huang Q P, Cai H L, et al.A broadband and switchable VO2-based perfect absorber at the THz frequency [J]. Opt Commun, 2018, 426: 443-449. [72]Zhang M, Song Z Y.Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J].Opt Express, 2020, 28(8):11780-11788 [73]Li Z X, Wang T L, Zhang H Y, et al.Tunable bifunctional metamaterial terahertz absorber based on Dirac semimetal and vanadium dioxide [J]. Superlattice Microstruct, 2021, 155: 106921. [74]Song Z Y, Chen A P, Zhang J H.Terahertz switching between broadband absorption and narrowband absorption[J].Opt Express, 2020, 28(2):2037-2044 [75]Zhu H L, Zhang Y, Ye L F, et al.Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption[J].Opt Express, 2020, 28(26):38626-38637 [76]Zhang M, Song Z Y.Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption[J].Opt Express, 2021, 29(14):21551-21561 [77]Liu Y, Huang R, Ouyang Z B.Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J].Opt Express, 2021, 29(13):20839-20850 [78]Chen Z, Chen J J, Tang H W, et al.Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene[J].Opt Express, 2022, 30(5):6778-6785 [79]Yuan S, Yang R C, Xu J P, et al.Photoexcited switchable single-/dual-band terahertz metamaterial absorber [J]. Mater Res Express, 2019, 6: 075807. [80]Chen Y, Li J S.Switchable dual-band and ultra-wideband terahertz wave absorber[J].Opt Mater Express, 2021, 11(7):2197-2205 [81]Li H, Xu W H, Cui Q, et al.Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device[J].Opt Express, 2020, 28(26):40060-40074 [82]Ye L F, Chen X E, Zhu C H, et al.Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide[J].Opt Express, 2020, 28(23):33948-33958 [83]Wang T L, Zhang H Y, Zhang Y P, et al.A bi-tunable switchable polarization-independent dual-band metamaterial terahertz absorber using VO2 and Dirac semimetal [J]. Results Phys, 2020, 19: 103484. [84]Lv T T, Dong G H, Qin C H, et al.Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition[J].Opt Express, 2021, 29(4):5437-5447 [85]Li J S, Li J X.Switchable tri-function terahertz metasurface based on polarization vanadium dioxide and photosensitive silicon[J].Opt Express, 2022, 30(8):12823-12834 [86]Wang T L, Zhang Y P, Zhang H Y, et al.Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial[J].Opt Mater Express, 2020, 10(2):369-386 [87]Li H, Yu J.Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band[J].Opt Express, 2020, 28(17):25225-25237 [88]Zhang B H, Xu K D.Dynamically switchable terahertz absorber based on a hybrid metamaterial with vanadium dioxide and graphene[J].J Opt Soc Am B, 2021, 38(11):3425-3434 [89]Zhang B H, Xu K D.Switchable and tunable bifunctional THz metamaterial absorber[J].J Opt Soc Am B, 2022, 39(3):A52-A60 [90]Li J S, Yan D X, Sun J Z.Flexible dual-band all-graphene-dielectric terahertz absorber[J].Opt Mater Express, 2019, 9(5):2067-2075 [91]Shen N H, Massaouti M, Gokkavas M, et al.Optically implemented broadband blueshift switch in the terahertz regime [J]. Phys Rev Lett, 2011, 106: 037403. [92]Choi H S, Ahn J S, Jung J H, et al.Mid-infrared properties of a VO2 film near the metal-insulator transition[J].Phys Rev B, 1996, 54(7):4621-4628 |
[1] | 吕海燕 , 洪占勇 , 杜先常 , . 单光子探测器制冷系统研究[J]. 量子电子学报, 2023, 40(3): 400-406. |
[2] | 徐建伟 , 欧阳收剑 , 段守鑫 , 邹林儿 , 邓晓华 , 沈 云 , . 太赫兹平面环偶极子超材料传感器及地沟油检测[J]. 量子电子学报, 2023, 40(3): 333-339. |
[3] | 陈启明, 傅仁轩, 徐勇军, 刘益标, 周金运, 宋显文. 移动焦平面正反面曝光制备 SU-8 微结构及 PDMS 浓度梯度产生器[J]. 量子电子学报, 2023, 40(3): 415-422. |
[4] | 肖 文, 张明浩, 张存林, 张亮亮∗. 液体产生太赫兹波的特性研究[J]. 量子电子学报, 2023, 40(2): 164-180. |
[5] | 潘晓凯 , 姜梦杰, , 王 东, , 吕旭阳, , 蓝诗琪 , , 卫英东 , , 何 源, , 郭书广, , 陈平平 , 王 林∗ , 陈效双 , 陆 卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217-237. |
[6] | 董秦鲁, 韩一平∗ , 张启凡. 太赫兹波在高超声速目标等离子体 鞘套中的传输特性[J]. 量子电子学报, 2023, 40(2): 258-266. |
[7] | 姚柏志 , 石粒力 , 吴敬波, , 陈 健 , ∗ , 吴培亨 , . 极低温下高灵敏太赫兹探测阵列的信号读出[J]. 量子电子学报, 2023, 40(2): 267-274. |
[8] | 汪辰宇♯ , 廖 宇♯ , 梅志杰, 刘旭东, 孙怡雯∗. 基于 GaAs 表面等离子体栅阵结构 的太赫兹调制器[J]. 量子电子学报, 2023, 40(2): 275-281. |
[9] | 吴仍来∗, 余亚斌, 肖世发, 全军. 单层原子的厚度对等离激元色散关系的修正[J]. 量子电子学报, 2022, 39(4): 541-548. |
[10] | 王洋, 李新∗, 黄雄豪, 刘恩超, 张艳娜. 太阳光谱辐照度仪波长扫描设计[J]. 量子电子学报, 2022, 39(4): 519-530. |
[11] | 孟维利∗, 王晴晴, 邵静, 程宏伟, 宫昊. 石墨烯基杂化聚合物太阳能电池中光活性层 组成对器件性能的影响[J]. 量子电子学报, 2022, 39(4): 613-619. |
[12] | 张立∗, 王琦. 三角形截面GaN 纳米线中的Fr¨ohlich 电子-声子相互作用哈密顿[J]. 量子电子学报, 2022, 39(4): 632-643. |
[13] | 许文昊, 寿一畅, 罗海陆. 光的自旋-轨道相互作用[J]. 量子电子学报, 2022, 39(2): 159-181. |
[14] | 裴志成, 丁朝华∗, 耿艳波, 肖景林. 单层过渡金属硫族化合物中弱耦合极化子的磁场效应[J]. 量子电子学报, 2021, 38(4): 539-544. |
[15] | 郑丽君 刘春娟 汪再兴 孙霞霞 刘晓忠. 6H-SiC基 MPS二极管正向双势垒特性研究[J]. 量子电子学报, 2021, 38(1): 99-107. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 485
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||