[1].参考文献:[2]Siegel P H.Terahertz Technology[J].IEEE T Microw Theory, 2002, 50(3):910-928[3]Masayoshi T.Cutting-edge THz technology [J]. Nat Photonics, 2007, 1: 97-105.[4]Fang P P, Shi X W, Liu C, et al.Single- and dual-band convertible terahertz absorber based on bulk Dirac semimetal [J]. Opt Commun, 2020, 462: 125333.[5]Zhao Y T, Wu B, Huang B J, et al.Switchable broadband terahertz absorberreflector enabled by hybrid graphene-gold metasurface[J].Opt Express, 2017, 25(7):7161-7169[6]Wang J L, Zhang B Z, Wang X, et al.Flexible dual-band band-stop metamaterials filter for the terahertz region[J].Opt Mater Express, 2017, 7(5):1656-1665[7]Zhou X T, Yin X, Zhang T, et al.Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide[J].Opt Express, 2015, 23(9):11657-11664[8]Andrey K K, Grigory I K, Ekaterina V T, et al.Terahertz polarization conversion with quartz waveplate sets[J].Appl Optics, 2013, 52(4):B60-B69[9]Luo S W, Lin B, Yu A L, et al.Broadband tunable terahertz polarization converter based on graphene metamaterial [J]. Opt Commun, 2018, 413: 184-189.[10]Pendry J B, Holden A J, Robbins D J, et al.Magnetism from conductors,and enhanced non-linear phenomena[J].IEEE T Microw Theory, 1999, 47(11):2075-2084[11]Smith D R, Padilla W J, Vier D C, et al.Composite medium with simultaneously negative permeability and permittivity[J].Phys Rev Lett, 2000, 84(18):4184-4187[12]Shelby R A, Smith D R, Schultz S.Experimental verification of a negative index of refraction[J].Science, 2001, 292(5514):77-79[13]Landy N I, Sajuyigbe S, Mock J J, et al.Perfect metamaterial absorber[J].Phys Rev Lett, 2008, 100(20):279-282[14]Hu T, Landy N I, Bingham C M, et al.A metamaterial absorber for the terahertz regime: Design,fabrication and characterization[J].Opt Express, 2008, 16(10):7181-7188[15]Pan M, Huang H Z, Fan B D, et al.Theoretical design of a triple-band perfect metamaterial absorber based on graphene with wide-angle insensitivity [J]. Results Phys, 2021, 23: 104037.[16]周维, 陈骏, 李豪, 谢林峰等.太赫兹电磁超材料完美吸收器的研究进展[J].激光与光电子学进展, 2022, 59(11):96-108[17]Chen H T.Interference theory of metamaterial perfect absorbers[J].Opt Express, 2012, 20(7):7165-7172[18]Hu T, Bingham C M, Strikwerda A C, et al.Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization [J]. Phys Rev B, 2008, 78: 241103.[19]Wang B X, Zhai X, Wang G Z, et al.Design of a four-band and polarization insensitive terahertz metamaterial absorber[J].IEEE Photonics J, 2014, 7(1):1-8[20]Liu G D, Zhai X, Meng H Y, et al.Dirac semimetals based tunable narrowband absorber at terahertz frequencies[J].Opt Express, 2018, 26(9):11471-11480[21]Huang X, Yang F, Gao B, et al.Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime[J].Opt Express, 2019, 27(18):25902-25911[22]Yang D X, Li J S.Tunable all-graphene-dielectric single-band terahertz wave absorber [J]. J Phys D Appl Phys, 2019, 52: 275102.[23]Chen M, Chen C, Deng S J, et al.Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals[J].OSA Continuum, 2019, 2(8):2477-2486[24]Xiong H, Shen Q.Thermally and electrically dual-tunable absorber based on Dirac semimetal and strontium titanate [J]. Nanoscale, 2020, 12: 14598-14604.[25]Huang X, He W, Yang F, et al.Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime[J].Opt Mater Express, 2019, 9(3):1377-1385[26]Deng G S, Xia T Y, Jing S C, et al.A tunable metamaterial absorber based on liquid crystal intended for f frequency band [J]. IEEE Antenn Wirel Pr, 2017, 16: 2062-2065.[27]Zheng W, Li W, Chang S J.A thermally tunable terahertz metamaterial absorber[J].Optoelectronics Letters, 2015, 11(1):0018-0021[28]Cheng Y Z, Gong R Z, Zhao J C.A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves [J]. Opt Mater, 2016, 62: 18-23.[29]Wang T L, Cao M Y, Zhang H Y, et al.Tunable terahertz metamaterial absorber based on Dirac semimetal films[J].Appl Optics, 2018, 57(32):9555-9561[30]Xiong H, Peng Y H, Yang F, et al.Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal[J].Opt Express, 2020, 28(10):15744-15752[31]Zhong M, Jiang X T, Zhu X L, et al.Design and fabrication of a single metal layer tunable metamaterial absorber in THz range [J]. Opt Laser Technol, 2020, 125: 106023.[32]Chen M, Sun W, Cai J J, et al.Frequency-tunable terahertz absorbers based on graphene metasurface [J]. Opt Commun, 2017, 382: 144-150.[33]Zhang Y, Lv J, Que L C, et al.A double-band tunable perfect terahertz metamaterial absorber based on Dirac semimetals [J]. Results Phys, 2019, 15: 102773.[34]Wang F L, Huang S, Li L, et al.Dual-band tunable perfect metamaterial absorber based on graphene[J].Appl Opt, 2018, 57(24):6916-6922[35]Li Z X, Wang T L, Qu L F, et al.Design of bi-tunable triple-band metamaterial absorber based on Dirac semimetal and vanadium dioxide[J].Opt Mater Express, 2020, 10(8):1941-1950[36]Li W Y, Cheng Y Z.Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure [J]. Opt Commun, 2020, 462: 125265.[37]Yin Z P, Lu Y J, Xia T Y, et al.Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal [J]. RSC Adv, 2018, 8: 4197-4203.[38]Yao G, Ling F R, Yue J, et al.Dual-band tunable perfect metamaterial absorber in the THz range[J].Opt Express, 2016, 24(2):1518-1527[39]Xing R, Jian S S.A dual-band THz absorber based on graphene sheet and ribbons [J]. Opt Laser Technol, 2018, 100: 129-130.[40]Meng W W, Que L C, Lv J, et al.A triple-band terahertz metamaterial absorber based on buck Dirac semimetals [J]. Results Phys, 2019, 14: 102461.[41]Li J S, Sun J Z.Umbrella-shaped graphene/Si for multi?band tunable terahertz absorber [J]. Appl Phys B-Lasers O, 2019, 125: 183.[42]Fan C Z, Tian Y C, Ren P W, et al.Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials[J].Chinese Phys B, 2019, 28(7):076105-[43]Luo J, Lin Q, Wang L L, et al.Ultrasensitive tunable terahertz sensor based on five-band perfect absorber with Dirac semimetal[J].Opt Express, 2019, 27(15):20165-20176[44]Xu K D, Li J X, Zhang A X, et al.Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips[J].Opt Express, 2020, 28(8):11482-11492[45]Zhang B H, Qi Y P, Zhang T, et al.Tunable multi-band terahertz absorber based on composite graphene structures with square ring and Jerusalem cross [J]. Results Phys, 2021, 25: 104233.[46]Wang R Z, Li L, Liu J L, et al.Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal[J].Opt Express, 2017, 25(26):32280-32289[47]Xu Z C, Gao R M, Ding C F, et al.Photoexited switchable metamaterial absorber at terahertz frequencies [J]. Opt Commun, 2015, 344: 125-128.[48]Jia Y L, Yin H Y, Yao H W, et al.Realization of multi-band perfect absorber in graphene based metal-insulator-metal metamaterials [J]. Results Phys, 2021, 25: 104301.[49]Bao Z Y, Wang J C, Hu Z D, et al.Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J].Opt Express, 2019, 27(22):31435-31445[50]Song Z Y, Wang K, Li J W, et al.Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J].Opt Express, 2018, 26(6):7148-7154[51]Mou N L, Sun S L, Dong H X, et al.Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J].Opt Express, 2018, 26(9):11728-11736[52]Wu T, Shao Y B, Ma S, et al.Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate[J].Opt Express, 2021, 29(5):7713-7723[53]Feng H, Xu Z X, Li K, et al.Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials[J].Opt Express, 2021, 29(5):7158-7164[54]Xiao B G, Gu M Y, Xiao S S.Broadband,wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays[J].Appl Optics, 2017, 56(19):5458-5462[55]Li H, Yu J.Active dual-tunable broadband absorber based on a hybrid graphene-vanadium dioxide metamaterial[J].OSA Continuum, 2020, 3(8):2143-2155[56]Xiong H, Shen Q, Ji Q.Broadband dynamically tunable terahertz absorber based on a Dirac semimetal[J].Appl Optics, 2020, 59(16):4970-4976[57]Zhang R Y, Luo Y H, Xu J K.Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption[J].Opt Express, 2021, 29(26):42989-42998[58]Xiong H, Ji Q, Bashir T, et al.Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal[J].Opt Express, 2020, 28(9):13884-13894[59]Wang S X, Cai C F, You M G, et al.Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study[J].Opt Express, 2019, 27(14):19436-19447[60]Dao R N, Kong X R, Zhang H F, et al.A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide [J]. Optik, 2019, 180: 619-625.[61]Bai J J, Zhang S S, Fan F, et al.Tunable broadband THz absorber using vanadium dioxide metamaterials [J]. Opt Commun, 2019, 452: 292-295.[62]Ye L P, Chen Y, Cai G X, et al.Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range[J].Opt Express, 2017, 25(10):11223-11232[63]Huang X, He W, Yang F, et al.Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J].Opt Express, 2018, 26(20):25558-25566[64]Xu J, Qin Z J, Chen M, et al.Broadband tunable perfect absorber with high absorptivity based on double layer graphene[J].Opt Mater Express, 2021, 11(10):3398-3410[65]Song Z Y, Jiang M W, Deng Y D, et al.Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material [J]. Opt Commun, 2020, 464: 125494.[66]Han J Z, Chen R S.Tunable broadband terahertz absorber based on a single-layer graphene metasurface[J].Opt Express, 2020, 28(20):30289-30298[67]Huang J, Li J N, Yang Y, et al.Broadband terahertz absorber with a flexible,reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J].Opt Express, 2020, 28(12):17832-17840[68]Wu G Z, Jiao X F, Wang Y D, et al.Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide[J].Opt Express, 2021, 29(2):2703-2711[69]Li Y L, Gao W, Guo L, et al.Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial[J].Opt Express, 2021, 29(25):41222-41233[70]Huang J, Li J N, Yang Y, et al.Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide [J]. Opt Express, 20200, 28(5): 7018-7027.[71]Zhao Y, Huang Q P, Cai H L, et al.A broadband and switchable VO2-based perfect absorber at the THz frequency [J]. Opt Commun, 2018, 426: 443-449.[72]Zhang M, Song Z Y.Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J].Opt Express, 2020, 28(8):11780-11788[73]Li Z X, Wang T L, Zhang H Y, et al.Tunable bifunctional metamaterial terahertz absorber based on Dirac semimetal and vanadium dioxide [J]. Superlattice Microstruct, 2021, 155: 106921.[74]Song Z Y, Chen A P, Zhang J H.Terahertz switching between broadband absorption and narrowband absorption[J].Opt Express, 2020, 28(2):2037-2044[75]Zhu H L, Zhang Y, Ye L F, et al.Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption[J].Opt Express, 2020, 28(26):38626-38637[76]Zhang M, Song Z Y.Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption[J].Opt Express, 2021, 29(14):21551-21561[77]Liu Y, Huang R, Ouyang Z B.Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J].Opt Express, 2021, 29(13):20839-20850[78]Chen Z, Chen J J, Tang H W, et al.Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene[J].Opt Express, 2022, 30(5):6778-6785[79]Yuan S, Yang R C, Xu J P, et al.Photoexcited switchable single-/dual-band terahertz metamaterial absorber [J]. Mater Res Express, 2019, 6: 075807.[80]Chen Y, Li J S.Switchable dual-band and ultra-wideband terahertz wave absorber[J].Opt Mater Express, 2021, 11(7):2197-2205[81]Li H, Xu W H, Cui Q, et al.Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device[J].Opt Express, 2020, 28(26):40060-40074[82]Ye L F, Chen X E, Zhu C H, et al.Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide[J].Opt Express, 2020, 28(23):33948-33958[83]Wang T L, Zhang H Y, Zhang Y P, et al.A bi-tunable switchable polarization-independent dual-band metamaterial terahertz absorber using VO2 and Dirac semimetal [J]. Results Phys, 2020, 19: 103484.[84]Lv T T, Dong G H, Qin C H, et al.Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO2 phase transition[J].Opt Express, 2021, 29(4):5437-5447[85]Li J S, Li J X.Switchable tri-function terahertz metasurface based on polarization vanadium dioxide and photosensitive silicon[J].Opt Express, 2022, 30(8):12823-12834[86]Wang T L, Zhang Y P, Zhang H Y, et al.Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial[J].Opt Mater Express, 2020, 10(2):369-386[87]Li H, Yu J.Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band[J].Opt Express, 2020, 28(17):25225-25237[88]Zhang B H, Xu K D.Dynamically switchable terahertz absorber based on a hybrid metamaterial with vanadium dioxide and graphene[J].J Opt Soc Am B, 2021, 38(11):3425-3434[89]Zhang B H, Xu K D.Switchable and tunable bifunctional THz metamaterial absorber[J].J Opt Soc Am B, 2022, 39(3):A52-A60[90]Li J S, Yan D X, Sun J Z.Flexible dual-band all-graphene-dielectric terahertz absorber[J].Opt Mater Express, 2019, 9(5):2067-2075[91]Shen N H, Massaouti M, Gokkavas M, et al.Optically implemented broadband blueshift switch in the terahertz regime [J]. Phys Rev Lett, 2011, 106: 037403.[92]Choi H S, Ahn J S, Jung J H, et al.Mid-infrared properties of a VO2 film near the metal-insulator transition[J].Phys Rev B, 1996, 54(7):4621-4628 |