量子电子学报 ›› 2024, Vol. 41 ›› Issue (1): 170-183.doi: 10.3969/j.issn.1007-5461.2024.01.017

• 量子光学 • 上一篇    下一篇

忆阻Sprott-R混沌系统的复杂动态分析 与电路实现

曾繁鹏 , 赖强*, 赖聪   

  1. ( 华东交通大学电气与自动化工程学院, 江西 南昌 330013 )
  • 收稿日期:2022-04-24 修回日期:2022-05-19 出版日期:2024-01-28 发布日期:2024-01-28
  • 通讯作者: E-mail: Laiqiang87@126.com E-mail:E-mail: Laiqiang87@126.com
  • 作者简介:曾繁鹏 ( 2002 - ), 女, 江西赣州人, 本科生, 主要从事混沌理论与应用方面的研究。E-mail: zengfp02@126.com
  • 基金资助:
    国家自然科学基金 (61961019), 江西省自然科学基金青年重点项目 (20202ACBL212003)

Complex dynamic analysis and circuit realization of memristive Sprott⁃R chaotic system

ZENG Fanpeng , LAI Qiang *, LAI Cong   

  1. ( School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China )
  • Received:2022-04-24 Revised:2022-05-19 Published:2024-01-28 Online:2024-01-28

摘要: 基于Sprott-R 三维混沌系统, 提出了一个具有多稳态和调幅特性的简单四维忆阻混沌系统。首先分析了系 统的稳定性, 发现该系统具有无穷多个不稳定平衡点。进而利用Lyapunov 指数谱、分岔图及相平面图, 研究了该忆 阻混沌系统的复杂动力学行为特性。研究结果表明,当系统参数发生变化时, 系统会经反倍周期分岔由混沌态进入 周期态; 在不同初始条件下, 系统能产生三种共存吸引子, 分别为双混沌吸引子共存、周期极限环与混沌吸引子共 存、双周期极限环共存; 当初始条件变化时, 系统输出四维混沌信号的幅度均发生变化。最后, 对该系统进行了电 路设计与仿真, 验证了该忆阻混沌系统的存在性。

关键词: 光电子学, 忆阻混沌系统, 共存吸引子, 调幅控制, 电路实现

Abstract: A simple four-dimensional memristive chaotic system with multistability and amplitude modulation characteristics is constructed based on three-dimensional Sprott-R chaotic system. Firstly, the system's stability characteristics are analyzed, and it is found that the system has infinite unstable equilibrium points. And then, the complex dynamical behaviors of the memristive chaotic system are studied using Lyapunov exponential spectrum, bifurcation diagram and the projection of chaotic attractors on the phase plane. The results show that when the system parameters change, the system will change from chaotic state to periodic state through inverse periodic bifurcation. And under different initial conditions, the system can generate three kinds of coexistence attractors, namely chaotic attractors coexistence, periodic limit cycle and chaotic attractor coexistence, and periodic limit cycles coexistence. In addtion, when the initial conditions change, the amplitude of the four-dimensional chaotic signals will change. Finally, the circuit design and realization of the system are carried out to further verify the existence of the new system.

Key words: optoelectronics, memristive chaotic system, coexisting attractors, amplitude modulation; circuit realization

中图分类号: