[1] Cheema S S, Shanker N, Wang L C, et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors [J]. Nature, 2022, 604(7904): 65-71.[2] Polini M, Guinea F, Lewenstein M, et al. Artificial honeycomb lattices for electrons, atoms and photons [J]. Nature Nanotechnology, 2013, 8(9): 625-33.[3] Smith M, Guan Z, Cantwell W J. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique [J]. International Journal of Mechanical Sciences, 2013, 67: 28-41.[4] Zhang G, Zhang X, Liu H, et al. 3d‐printed multi‐channel metal lattices enabling localized electric‐field redistribution for dendrite‐free aqueous zn ion batteries [J]. Advanced Energy Materials, 2021, 11(19): 2003927.[5] Han D, Ren X, Luo C, et al. Experimental and computational investigations of novel 3d printed square tubular lattice metamaterials with negative poisson’s ratio [J]. Additive Manufacturing, 2022, 55: 102789.[6] Zhang Z, Wei Q, Cheng Y, et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice [J]. Physical Review Letters, 2017, 118(8): 084303.[7] Biradha K, Santra R. Crystal engineering of topochemical solid state reactions [J]. Chemical Society Reviews, 2013, 42(3): 950-67.[8] Yang X, Wang C, Yan P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice‐matched interfacial engineering [J]. Advanced Energy Materials, 2022, 12(23): 2200197.[9] Tsai W F, Huang C Y, Chang T R, et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons [J]. Nature Communications, 2013, 4: 1500.[10] Guo Y, Yan B, Deng F, et al. Lattice expansion boosting photocatalytic degradation performance of CuCo2S4 with an inherent dipole moment [J]. Chinese Chemical Letters, 2023, 34(2): 107468.[11] He Z, Zhang J, Gong Z, et al. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis [J]. Nature Communications, 2022, 13(1): 2191.[12] Long R, Li Y, Liu Y, et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4 [J]. Journal of the American Chemical Society, 2017, 139(12): 4486-92.[13] Hu R, Iwamoto S, Feng L, et al. Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction [J]. Physical Review X, 2020, 10(2): 021050.[14] Chen G, Sharpe A L, Fox E J, et al. Tunable correlated chern insulator and ferromagnetism in a moire superlattice [J]. Nature, 2020, 579(7797): 56-61.[15] Zhao L D, Hao S, Lo S H, et al. High thermoelectric performance via hierarchical compositionally alloyed nanostructures [J]. Journal of the American Chemical Society, 2013, 135(19): 7364-70.[16] 吴小山 解. X射线衍射进展简介 [J]. 物理, 2012, 41(11): 727-35.[17] Deng W, Li T, Li H, et al. Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption [J]. Carbon, 2023, 206: 192-200.[18] Zhang C, Fei B, Yang D, et al. Robust lithium–sulfur batteries enabled by highly conductive WSe2‐based superlattices with tunable interlayer space [J]. Advanced Functional Materials, 2022, 32(24): 2201322.[19] Tang L, Yang Y, Guo H, et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst [J]. Advanced Functional Materials, 2022, 32(28): 2112157.[20] Zhang J, Mao X, Wang S, et al. Superlattice in a Ru superstructure for enhancing hydrogen evolution [J]. Angewandte Chemie, International Edition in English, 2022, 61(14): e202116867.[21] Pan X, Yang M Q, Fu X, et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications [J]. Nanoscale, 2013, 5(9): 3601-14.[22] Miao Y, Zhao Y, Zhang S, et al. Strain engineering: A boosting strategy for photocatalysis [J]. Advanced Materials, 2022, 34(29): e2200868.[23] Micheli A, Brennen G K, Zoller P. A toolbox for lattice-spin models with polar molecules [J]. Nature Physics, 2006, 2(5): 341-7.[24] Robert J. Macfarlane B L, Matthew R. Jones,Nadine Harris, George C. Schatz, Chad A. Mirkin*. Nanoparticle superlattice engineering with DNA [J]. Science, 2011, 334: 204-8.[25] Hu W, Liu Y, Withers R L, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials [J]. Nat Mater, 2013, 12(9): 821-6.[26] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-4.[27] Yao Y, Hu S, Chen W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis [J]. Nature Catalysis, 2019, 2(4): 304-13.[28] Dongrui Liu D W, Tao Hong, Ziyuan Wang, Yuping Wang, Yongxin Qin, Lizhong Su, Tianyu Yang, Xiang Gao, Zhenhua Ge, Bingchao Qin, Li-Dong Zhao. Lattice plainification advances highly effective SnSe crystalline thermoelectrics [J]. Science, 2023, 380: 841–6 [29] Ong S P, Mo Y, Richards W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors [J]. Energy Environmental Science, 2013, 6(1): 148-56.[30] Wang Z F, Liu Z, Liu F. Quantum anomalous hall effect in 2d organic topological insulators [J]. Physical Review Letters, 2013, 110(19): 196801.[31] Escudero-Escribano M, Malacrida P, Hansen M H, et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction [J]. Science, 2016, 352(6281): 73-6.[32] Liu Z, Ma L L, Shi G, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes [J]. Nature Nanotechnology, 2013, 8(2): 119-24.[33] Wang Z F, Liu Z, Liu F. Organic topological insulators in organometallic lattices [J]. Nature Communications, 2013, 4: 1471.[34] Zhao W, Ghorannevis Z, Amara K K, et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2 [J]. Nanoscale, 2013, 5(20): 9677-83.[35] Gümrük R, Mines R A W. Compressive behaviour of stainless steel micro-lattice structures [J]. International Journal of Mechanical Sciences, 2013, 68: 125-39.[36] Lohse M, Schweizer C, Zilberberg O, et al. A thouless quantum pump with ultracold bosonic atoms in an optical superlattice [J]. Nature Physics, 2015, 12(4): 350-4.[37] Cao Y, Luo J Y, Fatemi V, et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene [J]. Phys Rev Lett, 2016, 117(11): 116804.[38] Liu W Y, Tagawa M, Xin H L L, et al. Diamond family of nanoparticle superlattices [J]. Science, 2016, 351(6273): 582-6.[39] Yadav A K, Nelson C T, Hsu S L, et al. Observation of polar vortices in oxide superlattices [J]. Nature, 2016, 530(7589): 198-+.[40] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50.[41] Chen S, Walsh A, Gong X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers [J]. Advanced Materials, 2013, 25(11): 1522-39.[42] Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials [J]. Advanced Functional Materials, 2014, 24(33): 5211-8.[43] Li Y, Yin K, Wang L, et al. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction [J]. Applied Catalysis B: Environmental, 2018, 239: 537-44.[44] Mocherla P S V, Karthik C, Ubic R, et al. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects [J]. Applied Physics Letters, 2013, 103(2).[45] Dai Z, Qin F, Zhao H, et al. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis [J]. ACS Catalysis, 2016, 6(5): 3180-92.[46] Maughan A E, Ganose A M, Bordelon M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SNi6 and Cs2TeI6 [J]. J Am Chem Soc, 2016, 138(27): 8453-64.[47] Liu L, Yu P Y, Chen X, et al. Hydrogenation and disorder in engineered black TiO2 [J]. Physical Review Letters, 2013, 111(6): 065505.[48] Tan S, Zhang Y, Xia M, et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films [J]. Nature Materials, 2013, 12(7): 634-40.[49] Aschauer U, Pfenninger R, Selbach S M, et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO [J]. Physical Review B, 2013, 88(5).[50] Guoqiang Shi, Xue D. A multiscale perspective on quantum materials chemistry research [J]. Chemical Research, 2022, 33: 387-95.[51] Gu T, Zhang D, Yang Y, et al. Dual‐sites coordination engineering of single atom catalysts for full‐temperature adaptive flexible ultralong‐life solid‐state Zn?air batteries [J]. Advanced Functional Materials, 2022, 33(8).[52] Liu F, Chen K, Xue D. How to fast grow large-size crystals? [J]. Innovation (Camb), 2023, 4(4): 100458.[53] Zhang D, Zhang Q, Peng C, et al. Recent advances in developing multiscale descriptor approach for the design of oxygen redox electrocatalysts [J]. iScience, 2023, 26(5): 106624.[54] Zhang Q, Zhou C, Zhang D, et al. Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode [J]. Matter, 2023, 6(9): 2950-62.[55] Juliá F. Ligand‐to‐metal charge transfer (lmct) photochemistry at 3d‐metal complexes: An emerging tool for sustainable organic synthesis [J]. ChemCatChem, 2022, 14(19).[56] Steube J, Kruse A, Bokareva O S, et al. Janus-type emission from a cyclometalated iron(iii) complex [J]. Nature Chemistry, 2023, 15(4): 468-74.[57] Gao C, Wang J, Xu H, et al. Coordination chemistry in the design of heterogeneous photocatalysts [J]. Chemical Society Reviews, 2017, 46(10): 2799-823. |