量子电子学报 ›› 2025, Vol. 42 ›› Issue (6): 759-769.doi: 10.3969/j.issn.1007-5461.2025.06.003

• 图像与信息处理 • 上一篇    下一篇

基于改进 RANSAC 的单光子激光雷达 目标轨迹提取算法研究

盛明圳 1,2, 白同正 3, 郑小兵 2, 翟文超 2, 夏茂鹏 2*   

  1. 1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026; 2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031; 3 江淮前沿技术协同创新中心, 安徽 合肥 230000
  • 收稿日期:2025-06-09 修回日期:2025-08-25 出版日期:2025-11-28 发布日期:2025-11-28
  • 通讯作者: E-mail: mpxia@aiofm.ac.cn E-mail:mpxia@aiofm.ac.cn
  • 作者简介:盛明圳 ( 2001 - ), 安徽六安人, 研究生, 主要从事单光子激光雷达探测“低慢小”目标方面的研究。 E-mail: mz_sheng@163.com
  • 基金资助:
    江淮前沿技术协同创新中心追梦基金 (2023-ZM01K002)

Research on target trajectory extraction algorithm for single‑photon lidar based on improved RANSAC

SHENG Mingzhen 1,2 , Bai Tongzheng 3 , ZHENG Xiaobing 2 , ZHAI Wenchao 2 , XIA Maopeng 2*   

  1. 1 School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; 2 Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 3 Jianghuai Advanced Technology Center, Hefei 230000, China
  • Received:2025-06-09 Revised:2025-08-25 Published:2025-11-28 Online:2025-11-28

摘要: 随着无人机等“低慢小”目标在众多低空领域的广泛应用,“ 低慢小”目标逐渐成为威胁低空安全的重要因 素。本文针对低空空域对目标识别的实时性和准确性需求, 提出了基于单光子激光雷达的低慢小目标轨迹提取算 法。单光子激光雷达具有光子量级的探测灵敏度, 被广泛应用于目标测距等领域。本文所提算法利用激光雷达所测 得的目标距离信息, 将轨迹提取问题转换为基于随机抽样一致性 (RANSAC) 算法的直线拟合问题, 再通过对 RANSAC算法进行适应性优化以实现从大量回波点云中提取目标轨迹。试验结果表明, 当目标运动速度变化范围为 45~75 m/s、背景噪声强度变化范围为500~3500 counts/s时, 算法具有较好的适应性, 误差始终控制在7 m以内,运行 时间控制在 75 ms 以内。该方法为实时准确提取基于单光子激光雷达的低慢小目标轨迹提供了一种可行的技术 方案。

关键词: 激光技术, 单光子激光雷达, 低慢小目标, RANSAC算法, 轨迹提取

Abstract: With the widespread application of low-slow-small (LSS) targets such as drones in many lowaltitude airspace, LSS targets have gradually become a significant threat to low-altitude security. In response to the requirements for real-time and accurate target identification in the low-altitude airspace, a trajectory extraction algorithm for LSS targets based on single-photon lidar is proposed in this work. Single-photon lidar, with its photon-level detection sensitivity, has been widely used in fields such as target ranging. This algorithm utilizes the target distance information measured by lidar to transform the trajectory extraction problem into a line fitting problem based on the random sample consensus (RANSAC) algorithm, and then adaptively optimizes the RANSAC algorithm to extract target trajectories from a large number of echo point clouds. Experimental results show that when the target's movement speed varies between 45 m·s −1 and 75 m·s −1 , and the background noise intensity varies between 500 counts·s −1 and 3500 counts·s −1 , the algorithm demonstrates good adaptability, with errors always being controlled within 7 m and runtime within 75 ms. This method provides a feasible technical solution for real-time and accurate extraction of LSS target trajectories based on single-photon lidar.

Key words: laser techniques, single-photon lidar, low-slow-small target, RANSAC algorithm, trajectory extraction

中图分类号: