量子电子学报

• 图像与信息处理 • 上一篇    下一篇

基于新距离矩阵方差的模糊聚类图像分割算法

胡 婕, 周跃跃   

  1. 湖北大学计算机与信息工程学院, 湖北 武汉 430062
  • 出版日期:2018-03-28 发布日期:2019-06-11
  • 作者简介:胡 婕 ( 1977- ),湖北人, 博士,副教授,从事数据库及其推理技术,语义数据库方面的研究。 E-mail:joycehu721@outlook.com
  • 基金资助:
    Supported by National Natural Science Foundation of China(国家自然科学基金,61202100)

Fuzzy clustering image segmentation algorithm based on new distance matrix variance

HU Jie,ZHOU Yueyue   

  1. School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
  • Published:2018-03-28 Online:2019-06-11

摘要: 传统模糊聚类算法(FCM)存在初始聚类中心不确定的问题,在图像分割中没有完全考虑到像素之间的灰度、空间信息。为解决此问题,提出了基于新距离矩阵方差的模糊聚类图像分割算法。用像素点生成一个改进的新距离矩阵,并根据此矩阵特点选取初始聚类中心;结合方差确定聚类类别数,并消除部分噪声;对聚类结果进行有效性判定,确定最佳的分割结果。与SPFCM算法相比,提出算法的平均准确率提高了4.55%。实验结果表明提出方法能有效提高图像分割的平均准确率,对处理噪声有更好的效果。

关键词: 图像处理, 图像分割, 模糊聚类算法, 新距离矩阵, 方差

Abstract: The traditional fuzzy clustering algorithm (FCM) has the problem of uncertain initial cluster centers, and the gray and spatial information between pixels is not fully considered in image segmentation. In order to solve the above problem, a new fuzzy clustering image segmentation algorithm is proposed based on new distance matrix variance. The pixels are used to generate an improved new distance matrix, and the initial cluster center is selected according to characteristics of the new distance matrix. The number of cluster categories is determined combined with the variance, and part of noise is eliminated. The effectiveness determination is carried out on clustering result, and the best segmentation results are determined. Compared with the contrast algorithms, the average accuracy of the proposed algorithm is increased by 4.55%. Experimental results show that the proposed method can effectively improve the average accuracy of image segmentation, and has a better effect on noise treatment.

Key words: image processing, image segmentation, fuzzy clustering algorithm, new distance matrix, variance