量子电子学报 ›› 2021, Vol. 38 ›› Issue (2): 192-213.
张中晗1, 戴云1;2, 王阳啸1;2, 张振1;2, 武安华1;2, 苏良碧1;2;3∗
收稿日期:
2020-12-08
修回日期:
2021-02-02
出版日期:
2021-03-28
发布日期:
2021-03-29
通讯作者:
E-mail: suliangbi@mail.sic.ac.cn
E-mail:suliangbi@mail.sic.ac.cn
作者简介:
张中晗( 1988 - ), 山东人, 博士, 主要从事激光晶体, 单晶光纤方面的研究。E-mail: zhangzhonghan@mail.sic.ac.cn
基金资助:
ZHANG Zhonghan1, DAI Yun1;2, WANG Yangxiao1;2, ZHANG Zhen1;2, WU Anhua1;2, SU Liangbi1;2;3∗
Received:
2020-12-08
Revised:
2021-02-02
Published:
2021-03-28
Online:
2021-03-29
摘要: 单晶光纤(SCF) 即具有光纤形态的单晶体, 不仅保持了单晶材料优异的理化性能, 而且具备光纤散热效率 高的优势和光波导特性, 在固态激光、辐射探测、高温传感等领域具有潜在的应用前景。近年来, 研究人员在单 晶光纤的晶体生长、包层制备技术、器件应用等领域开展了大量研究。本文围绕当前制备氧化物和氟化物单晶 光纤广泛采用的微下拉法、激光加热基座法、导模法等晶体生长技术展开详细讨论, 论述了上述晶体生长技术的 原理和应用特点, 并介绍了国内外相关领域科研团队的研究进展。此外, 简要介绍了单晶光纤在高功率激光、中 红外激光、辐射探测等领域的应用探索, 并探讨了单晶光纤的包层制备技术。
中图分类号:
张中晗, 戴云, 王阳啸, 张振, 武安华, 苏良碧, ∗. 单晶光纤的生长技术与应用研究[J]. 量子电子学报, 2021, 38(2): 192-213.
ZHANG Zhonghan, DAI Yun, WANG Yangxiao, ZHANG Zhen, WU Anhua, SU Liangbi, ∗. Crystal growth techniques and applications of single-crystal fibers[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 192-213.
[1] | Lu Z H, Zhao X S, Chen J Q, et al. Conditions and controls of the growth of single crystal fibers [J]. Journal of Synthetic |
Crystals, 1989, 18(2): 154-159. | |
卢子宏, 赵先胜, 陈继勤, 等. 单晶光纤生长条件及控制[J]. 人工晶体学报, 1989, 18(2): 154-159. | |
[2] | Wu L S,Wang A H,Wu J M, et al. Several factors in Ti:sapphire single crystal fibers growth [J]. Journal of Synthetic Crystals, |
19 | 95, 24(4): 316-319. |
吴路生, 王爱华, 吴金明, 等. 掺钛宝石单晶纤维生长中的若干因素[J]. 人工晶体学报, 1995, 24(4): 316-319. | |
[3] | Lebbou K. Single crystals fiber technology design. Where we are today? [J]. Optical Materials, 2017, 63: 13-18. |
[4] | Fejer M, Byer R L, Feigelson R, et al. Growth and characterization of single crystal refractory oxide fibers [C]. Proceedings |
of SPIE, 1982, 0320: 50-55. | |
[5] | Yoon D-H, Yonenaga I, Fukuda T, et al. Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down |
method [J]. Journal of Crystal Growth, 1994, 142(3-4): 339-343. | |
[6] | Ishida T, Togawa T, Morita H, et al. 6 kW and 10 kW high-power lamp-pumped MOPA Nd:YAG laser systems [C]. Proceedings |
of SPIE, 2000, 3888: 568-576. | |
[7] | WangWC, Zhou B, Xu S H, et al. Recent advances in soft optical glass fiber and fiber lasers [J]. Progress in Materials Science, |
20 | 19, 101: 90-171. |
[8] | Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser [C]. Advanced Solid-State |
Lasers Congress, OSA Technical Digest (online), 2013, paper ATh4A.2. | |
[9] | Dawson JW, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high |
average power [J]. Optics Express, 2008, 16(17): 13240-13266. | |
[10] | Kim W, Florea C, Baker C, et al. Single crystal fibers for high power lasers [C]. Proceedings of SPIE, 2012, 8547: 85470K. |
[11] | Dawson J W, Messerly M J, Heebner J E, et al. Power scaling analysis of fiber lasers and amplifiers based on non-silica |
materials [C]. Proceedings of SPIE, 2010, 7686: 768611. | |
[12] | Harrington J A. Single-crystal fiber optics: A review [C]. Proceedings of SPIE, 2014, 8959: 895902. |
[13] | Wang T, Zhang J, Zhang N, et al. Research progress in preparation of single crystal fiber and fiber lasers [J]. Laser & Optoelectronics |
Progress, 2019, 56(17): 170611. | |
王涛, 张健, 张娜, 等. 单晶光纤制备及单晶光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170611. | |
[14] | Jackson S D. Towards high-power mid-infrared emission from a fiber laser [J]. Nature Photonics, 2012, 6: 423-431. |
[15] | Hudson D D, Fuerbach A, Jackson S D. Progress in Mid-Infrared Fiber Source Development [M]. Peng G D (eds), Handbook |
of Optical Fibers, Springer Singapore, 2018: 5-10. | |
[16] | Saad M. Fluoride glass fiber: State of the art [C]. Proceedings of SPIE, 2009, 7316: 73160N. |
[17] | Aydin Y O, Fortin V, Vall´ee R, et al. Towards power scaling of 2.8 m fiber lasers [J]. Optics Letters, 2018, 43(18): 4542-4545. |
[18] | Messner M, Heinrich A, Unterrainer K. High-energy diode side-pumped Er:LiYF4 laser [J]. Applied Optics, 2018, 57(6): 1497- |
1503. | |
[19] | LaBelle H E, Mlavsky A I. Growth of controlled profile crystals from the melt: Part I-Sapphire filaments [J]. Materials Research |
Bulletin, 1971, 6(7): 571-579. | |
[20] | Burrus C A, Stone J. Single-crystal fiber optical devices: A Nd:YAG fiber laser [J]. Applied Physics Letters, 1975, 26(6): |
31 | 8-320. |
[21] | Andreeta M R B, Hernandes A C. Laser-Heated Pedestal Growth of Oxide Fibers [M]. Dhanaraj G, Byrappa K, Prasad V, et |
al (eds.), Springer Handbook of Crystal Growth, Springer Berlin Heidelberg, 2010: 393-342. | |
[22] | Fukuda T, Chani V I. Shaped Crystals: Growth by Micro-Pulling-Down Technique [M]. Springer-Verlag Berlin Heidelberg, |
20 | 07: 3-26. |
[23] | Sangla D, Martial I, Aubry N, et al. High power laser operation with crystal fibers [J]. Applied Physics B, 2009, 97: 263-273. |
[24] | Wildermuth S, Bohnert K, Br¨andle H, et al. Crystalline Bi4Ge3O12 fibers fabricated by micro-pulling down technique for |
optical high voltage sensing [J]. Procedia Engineering, 2011, 25: 507-510. | |
[25] | Lebbou K, Perrodin D, Chani V I, et al. Fiber single-crystal growth from the melt for optical applications [J]. Journal of the |
American Ceramic Society, 2006, 89(1): 75-80. | |
[26] | Pauwels K, Dujardin C, Gundacker S, et al. Single crystalline LuAG fibers for homogeneous dual-readout calorimeters [J]. |
Journal of Instrumentation, 2013, 8: P09019. | |
[27] | Xu X, Lebbou K, Moretti F, et al. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics [J]. Acta |
Materialia, 2014, 67: 232-238. | |
[28] | Faraj Sara. Growth and Characterization of Ce Doped LuAG Single Crystal Fibers by the Micro-Pulling-Down Technique [D]. |
Lyon (France): l’Universit´e Claude Bernard Lyon 1, 2017: 70-72. | |
[29] | Zhou D, Xia C, Guyot Y, et al. Growth and spectroscopic properties of Ti-doped sapphire single-crystal fiber [J]. Optical |
Materials, 2015, 47: 495-500. | |
[30] | Santo A M E, Ranieri I M, Brito G E S, et al. Growth of LiYF4 single-crystalline fibres by micro-pulling-down technique [J]. |
Journal of Crystal Growth, 2005, 475: 528-533. | |
[31] | Lelii F D, Shu J, Pirzio F, et al. Laser investigation of Yb:YLF crystals fabricated with the micro-pulling-down technique [J]. |
Applied Optics, 2018, 57(9): 2223-2226. | |
[32] | Veronesi S, Zhang Y, Tonelli M, et al. Efficient laser emission in Ho3+:LiLuF4 grown by micro-pulling down method [J]. Optics |
Express, 2012, 20(17): 18723-18731. | |
[33] | Sottile A, Zhang Z, Veronesi S, et al. Visible laser operation in a Pr3+:LiLuF4 monocrystalline fiber grown by the micropulling- |
down method [J]. Optical Materials Express, 2016, 6(6): 1964-1972. | |
[34] | Pirzio F, Jun S, Tacchini S, et al. Multi-watt amplification in a birefringent Yb:LiLuF4 single crystal fiber grown by micropulling- |
down [J]. Optics Letters, 2019, 44(17): 4095-4098. | |
[35] | Kim K J, Jouini A, Yoshikawa A, et al. Growth and optical properties of Pr, Yb-codoped KY3F10 fluoride single crystals for |
up-conversion visible luminescence [J]. Journal of Crystal Growth, 2007, 299(1): 171-177. | |
[36] | Shu J, Damiano E, Sottile A, et al. Growth by the -PD method and visible laser operation of a single-crystal fiber of |
Pr3+:KY3F10 [J]. Crystals, 2017, 7(7): 200. | |
[37] | Yuan D S, Jia Z T, Shu J, et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal |
growth [J]. Journal of Synthetic Crystals, 2014, 43(6): 1317-1322. | |
原东升, 贾志泰, 舒骏, 等. 微下拉晶体光纤生长设备研制及YAG 单晶生长[J]. 人工晶体学报, 2014, 43(6): 1317-1322. | |
[38] | Yuan D, Li Y, Shu J, et al. Spatial nonlinear optics anisotropy and directional growth of TbCOB crystal by micro-pulling-down |
for SHG application [J]. Journal of Crystal Growth, 2016, 433: 59-62. | |
[39] | Wu B, Nie H, Wang A, et al. Factors influencing optical uniformity of YAG single-crystal fiber grown by micro-pulling-down |
technology [J]. CrystEngComm, 2019, 21: 6929-6934. | |
[40] | Yuan D, Jia Z, Li Y, et al. Micro-pulling-down furnace modification and single crystal fibers growth [C]. Proceedings of SPIE, |
20 | 16, 9726: 97260E. |
[41] | Xu J, Song Q, Liu J, et al. The micro-pulling-down growth of Eu3+-doped Y3Al5O12 and Y3ScAl4O12 crystals for red luminescence |
[J] | Optical Materials, 2020, 109: 110388. |
[42] | Zhao Y, Wang L, Chen W, et al. 35 W continuous-wave Ho:YAG single-crystal fiber laser [J]. High Power Laser Science and |
Engineering, 2020, 8: E25. | |
[43] | Fukuda T, Rudolph P, Uda S. Fiber Crystal Growth from the Melt [M]. Springer-Verlag Berlin Heidelberg, 2004: 1-46. |
[44] | Andreeta M R B, Andreeta E R M, Hernandes A C, et al. Thermal gradient control at the solid-liquid interface in the laserheated |
pedestal growth technique [J]. Journal of Crystal Growth, 2003, 234(4): 759-761. | |
[45] | Tong L. Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors [J]. Journal |
of Crystal Growth, 2000, 217(3): 281-286. | |
[46] | Maxwell G, Ponting B, Gebremichael E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal |
growth [J]. Crystals, 2017, 7(1): 12. | |
[47] | Bera S, Nie C D, SoskindMG, et al. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated |
pedestal growth technique [J]. Applied Optics, 2017, 56(35): 9649-9655. | |
[48] | Nie C D. Rare-Earth-Doped Single-Crystal YAG Fibers Grown by the Laser Heated Pedestal Growth Technique [D]. New |
Brunswick, New Jersey: Rutgers University, 2017: 21-46. | |
[49] | Nie C D, Bera S, Harrington J A. Growth of single-crystal YAG fiber optics [J]. Optics Express, 2016, 24(14): 15522-15527. |
[50] | Dubinskii M, Zhang J, Fromzel V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high |
efficiency fiber lasers [J]. Optics Express, 2018, 26(4): 5092-5101. | |
[51] | KimW, Shaw B, Bayya S, et al. Cladded single crystal fibers for high power fiber lasers [C]. Proceedings of SPIE, 2016, 9958: |
99 | 580O. |
[52] | Shaw L B, Bayya S, Kim W, et al. Cladded single crystal fibers for all-crystalline fiber lasers [C]. Conference on Lasers and |
Electro-Optics, OSA Technical Digest (online), 2018, paper SF3I.3. | |
[53] | Shaw L B, Bayya S, Kim W, et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers [C]. Advanced |
Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online), 2018, paper | |
SoW2H.3. | |
[54] | Liu C, Wang T, Rou T, et al. Higher gain of single-mode Cr-doped crystalline core fibers by online controlling molten zone |
[C] | Conference on Lasers and Electro-Optics, OSA Technical Digest (online), 2017, paper JTu5A.94. |
[55] | Iskhakova L D, Kashin V V, Lavrishchev S V, et al. Facet appearance on the lateral face of sapphire single-crystal fibers during |
LHPG growth [J]. Crystals, 2016, 6(9): 101. | |
[56] | Ishibashi S, Naganuma K, Yokohama I. Cr, Ca:Y3A15O12 laser crystal grown by the laser-heated pedestal growth method [J]. |
Journal of Crystal Growth, 1998, 183: 614-621. | |
[57] | Wang T, Zhang J, Zhang N, et al. The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method |
and the effects of their discoloration [J]. RSC Advances, 2019, 9: 22567. | |
[58] | Wang T, Zhang J, Yang L, et al. Antioxidation and high-resolution ultrasonic temperature sensor based on Cr3+:MgAl2O4 |
single crystal fiber [J]. Crystal Growth & Design, 2020, 20(10): 6763-6768. | |
[59] | Wang T, Zhang J, Yang L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor |
[J] | Journal of Materials Chemistry C, 2020, 8: 3830-3837. |
[60] | Dai Y, Zhang Z, Su L, et al. Growth of high-quality Yb3+-doped Y3Al5O12 single crystal fiber by laser heated pedestal growth |
method [J]. Journal of Inorganic Materials, doi: 10.15541/jim20200475. | |
[61] | Dai Y, Zhang Z,Wang Y, et al. Growth of Tm:Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal |
method and its spectral properties [J]. Optical Materials, 2021, 111: 110674. | |
[62] | Fitzgibbon J J, Collins J M. High-volume production of low-loss sapphire optical fibers by Saphikon EFG (edge-defined, |
film-fed growth) method [C]. Proceedings of SPIE, 1998, 3262: 135-141. | |
[63] | LaBelle Jr H E. Growth of controlled profile crystals from the melt: Part II-Edge-defined, film-fed growth (EFG) [J]. Journal |
of Crystal Growth, 1971, 6(7): 581-589. | |
[64] | Chalmers B, Labelle Jr H E, Mlavsky A I. Edge-defined, film-fed crystal growth [J]. Journal of Crystal Growth, 1972, 13/14: |
84 | -87. |
[65] | Wang D, Hou W, Li N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed |
growth method [J]. Journal of Inorganic Materials, 2020, 35(9): 1053-1058. | |
[66] | Kurlov V N, Stryukov D O, Shikunova I A. Growth of sapphire and oxide eutectic fibers by the EFG technique [J]. Journal of |
Physics: Conference Series, 2016, 673(1): 012017. | |
[67] | Zhang Z, Wang S, Feng X, et al. Growth, characterization, and efficient continuous-wave laser operation in Nd, Gd:CaF2 |
single-crystal fibers [J]. Crystal Growth & Design, 2020, 20(10): 6329-6336. | |
[68] | Hara S, Ogino K. The densities and the surface tensions of fluoride melts [J]. ISIJ International, 1989, 29(6): 477-485. |
[69] | Wang Y, Wang S, Wang J, et al. High-efficiency 2 m CW laser operation of LD-pumped Tm3+:CaF2 single-crystal fibers [J]. |
Optics Express, 2020, 28(5): 6684-6695. | |
[70] | Zu Y, Zong M, Wang Y, et al. Self-Q-switched and broad wavelength-tunable lasing in Tm3+-doped CaF2 single-crystal fiber |
[J] | Applied Physics Express, 2020, 13: 102003. |
[71] | Wang S, Tang F, Liu J, et al. Growth and highly efficient mid-infrared continuous-wave laser of lightly doped Er:SrF2 singlecrystal |
fibers. [J] Optical Materials, 2019, 95: 109255. | |
[72] | Zhang Z,Wu Q,Wang Y, et al. Efficient 2.76 m continuous-wave laser in extremely lightly Er-doped CaF2 single-crystal fiber |
[J] | Laser Physics Letters, 2020, 17: 085801. |
[73] | D´elen X, Piehler S, Didierjean J, et al. 250 W single-crystal fiber Yb:YAG laser [J]. Optics Letters, 2012, 37(14): 2898-2900. |
[74] | Zaouter Y, Martial I, Aubry N, et al. Direct amplification of ultrashort pulses in -pulling-down Yb:YAG single crystal fibers |
[J] | Optics Letters, 2011, 36(5): 748-750. |
[75] | D´elen X, Zaouter Y, Martial I, et al. Yb:YAG single crystal fiber power amplifier for femtosecond sources [J]. Optics Letters, |
20 | 13, 38(2): 109-111. |
[76] | Lesparre F, Gomes J T, D´elen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse |
amplification technique [J]. Optics Letters, 2016, 41(7): 1628-1631. | |
[77] | Quintanilla M, Zhang Y, Liz-Marz´an L M. Subtissue plasmonic heating monitored with CaF2:Nd3+, Y3+ nanothermometers in |
the second biological window [J]. Chemistry of Materials, 2018, 30(8): 2819-2828. | |
[78] | ˇ Sulc J, ˇSvejkar R, Nˇemec M, et al. Er:SrF2 crystal for diode-pumped 2.7 m laser [C]. Advanced Solid State Lasers, OSA |
Technical Digest (online), 2014, paper ATu2A.22. | |
[79] | Su L, Guo X, Jiang D, et al. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal |
[J] | Optics Express, 2018, 26(5): 5558-5563. |
[80] | Lucchini M, Medvedeva T, Pauwels K, et al. Test beam results with LuAG fibers for next-generation calorimeters [J]. Journal |
of Instrumentation, 2013, 8: P10017. | |
[81] | Benaglia A, Lucchini M, Pauwels K, et al. Test beam results of a high granularity LuAG fibre calorimeter prototype [J]. Journal |
of Instrumentation, 2016, 11: P05004. | |
[82] | Lo C Y, Huang Y K, Chen J C, et al. Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified |
spontaneous emission [J]. Optics Letters, 2004, 29(5): 439-441. | |
[83] | Zhang J, Zhang T, Zhang H, et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: From |
1D | fibers to multidimensional fabrics [J]. Advanced Materials, 2020, 32(36): 2002702. |
[84] | Yang T I, Liu H T, Wang S C, et al. Formation of ceramic and crystal claddings for a Ti:sapphire crystalline fiber core [J]. |
Optical Materials Express, 2020, 10(5): 1215-1223. | |
[85] | Huang K Y, Hsu K Y, Jheng D Y, et al. Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire |
tube assisted CDLHPG technique [J]. Optics Express, 2008, 16(16): 12264-12271. | |
[86] | KimW, Bayya S, Shaw B, et al. Hydrothermally cladded crystalline fibers for laser applications [J]. Optical Materials Express, |
20 | 20, 9(6): 2716-2728. |
[87] | Chen H, Buric M, Ohodnicki P, et al. Review and perspective: Sapphire optical fiber cladding development for harsh environment |
sensing [J]. Applied Physics Review, 2018, 5: 011102. |
[1] | 孙贵花∗, 张庆礼, 罗建乔, 高进云, 刘文鹏, 李加红, 陈迎迎. γ 射线辐照对 Cr 掺杂 MgAl2O4 晶体光谱特征的影响[J]. 量子电子学报, 2023, 40(1): 79-84. |
[2] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[3] | 徐民, 龚巧瑞, 李善明, 杭寅∗. 钛宝石激光晶体研究进展[J]. 量子电子学报, 2021, 38(2): 148-159. |
[4] | 韩卫民, 倪友保∗, 吴海信, 王振友, 黄昌保. 新型长波红外材料PbGa6Te10 的生长[J]. 量子电子学报, 2021, 38(2): 172-179. |
[5] | 李壮, 李春霄, 姚吉勇, ∗, 吴以成, . BaGa4Se7 和BaGa2GeSe6 晶体研究进展[J]. 量子电子学报, 2021, 38(2): 185-191. |
[6] | 戴云, 张中晗, 王皙彬, 李金, 龙勇, 苏良碧, 丁雨憧, 武安华, ∗ (. 激光加热基座光纤炉研制及单晶光纤生长研究[J]. 量子电子学报, 2021, 38(2): 214-218. |
[7] | 黄荔, 郭强, 罗建乔, 王首长, 周健, 吴朝辉. Er:GSGG 晶体的光谱性质分析及激光特性模拟研究[J]. J4, 2012, 29(1): 45-51. |
[8] | 王迪 万松明 张庆礼 孙敦陆 殷绍唐 尤静林 王媛媛. LiB3O 5晶体及其自助溶生长溶液的高温拉曼光谱研究[J]. J4, 2011, 28(2): 241-246. |
[9] | 田玉冰 檀慧明 付喜宏 魏君成. 激光二极管列阵泵浦Yb:YAG/LBO 525nm绿光激光器[J]. J4, 2008, 25(6): 681-684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||