Chinese Journal of Quantum Electronics ›› 2022, Vol. 39 ›› Issue (2): 251-261.doi: 10.3969/j.issn.1007-5461.2022.02.005
Previous Articles Next Articles
OUYANG Xu1, ZHANG Mingsi1, YANG Qingshuai1, CAO Yaoyu1, XU Yi2, LI Xiangping1*
Received:
2021-12-01
Revised:
2022-01-09
Published:
2022-03-28
Online:
2022-03-28
CLC Number:
OUYANG Xu, ZHANG Mingsi, YANG Qingshuai, CAO Yaoyu, XU Yi, LI Xiangping. Progress in orbital angular momentum multiplexing and detection based on nano structures[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 251-261.
[1]Darwin C G.Notes on the theory of radiation[J]. Proceedings of the Royal Society of London. 1932, 136(829): 36-52. [2]Allen L, Beijersbergen M W, Spreeuw R J C, et al.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J].Physical Review A, 1992, 45(11):8185- [3]Firth W J, Skryabin D V.Optical solitons carrying orbital angular momentum[J].Physical Review Letters, 1997, 79(13):2450- [4]Soskin M S, Gorshkov V N, Vasnetsov M V, et al.Topological charge and angular momentum of light beams carrying optical vortices[J].Physical Review A, 1997, 56(5):4064- [5]Zhan Q.Cylindrical vector beams: from mathematical concepts to applications[J].Advances in Optics and Photonics, 2009, 1(1):1-57 [6]Yao A M, Padgett M J.Orbital angular momentum: origins,behavior and applications[J].Advances in Optics and Photonics, 2011, 3(2):161-204 [7]王帅, 邓子岚, 王发强, 王晓雷, 李向平.光子角动量在环形金属纳米孔异常透射过程中的作用[J].物理学报, 2019, 68(07):261-267 [8]Wang S, Deng Z L, Cao Y, et al.Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring[J].IEEE Photonics Journal, 2017, 10(1):1-9 [9]Hell S W, Wichmann J.Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].Optics Letters, 1994, 19(11):780-782 [10]Liang L, Feng Z, Zhang Q, et al.Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles[J]. Nature Nanotechnology, 2021: 1-6. [11]Willig K I, Rizzoli S O, Westphal V, et al.STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J].Nature, 2006, 440(7086):935-939 [12]Wang B, Shi J, Zhang T, et al.Improved lateral resolution with an annular vortex depletion beam in STED microscopy[J].Optics Letters, 2017, 42(23):4885-4888 [13]Franke-Arnold S, Allen L, Padgett M.Advances in optical angular momentum[J].Laser & Photonics Reviews, 2008, 2(4):299-313 [14]Simpson N B, Allen L, Padgett M J.Optical tweezers and optical spanners with Laguerre–Gaussian modes[J].Journal of Modern Optics, 1996, 43(12):2485-2491 [15]Paterson L, MacDonald M P, Arlt J, et al.Controlled rotation of optically trapped microscopic particles[J].Science, 2001, 292(5518):912-914 [16]MacDonald M P, Paterson L, Volke-Sepulveda K, et al.Creation and manipulation of three-dimensional optically trapped structures[J].Science, 2002, 296(5570):1101-1103 [17]Grier D G.A revolution in optical manipulation[J].Nature, 2003, 424(6950):810-816 [18]Molina-Terriza G, Torres J P, Torner L.Twisted photons[J].Nature Physics, 2007, 3(5):305-310 [19]姜美玲, 张明偲, 李向平, 曹耀宇.超分辨光存储研究进展[J].光电工程, 2019, 46(03):82-93 [20]曹耀宇, 谢飞, 张鹏达, 李向平.双光束超分辨激光直写纳米加工技术[J].光电工程, 2017, 44(12):1133-1145 [21]Gan Z, Cao Y, Evans R A, et al.Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J].Nature Communications, 2013, 4(1):1-7 [22]Li X, Cao Y, Tian N, et al.Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabitssecond data rate[J].Optica, 2015, 2(6):567-570 [23]Cao Y, Gan Z, Jia B, et al.High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J].Optics Express, 2011, 19(20):19486-19494 [24]Franke-Arnold S, Barnett S M, Padgett M J, et al.Two-photon entanglement of orbital angular momentum states[J].Physical Review A, 2002, 65(3):033823- [25]Stav T, Faerman A, Maguid E, et al.Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J].Science, 2018, 361(6407):1101-1104 [26]Mair A, Vaziri A, Weihs G, et al.Entanglement of the orbital angular momentum states of photons[J].Nature, 2001, 412(6844):313-316 [27]Vaziri A, Weihs G, Zeilinger A.Experimental two-photon,three-dimensional entanglement for quantum communication[J].Physical Review Letters, 2002, 89(24):240401- [28]吕宏, 柯熙政.光束轨道角动量的量子通信编码方法研究[J].量子电子学报, 2010, 27(02):155-160 [29]丁冬生, 周志远, 史保森.高维量子态存储[J].量子电子学报, 2014, 31(04):442-448 [30]邓子岚, 涂清安, 李向平.多维度超表面及其在信息加密防伪上的应用[J].红外与激光工程, 2020, 49(09):80-95 [31]Dai Q, Ouyang M, Yuan W, et al.Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J].Advanced Materials, 2017, 29(35):1701918- [32]Zijlstra P, Chon J W M, Gu M.Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J].Nature, 2009, 459(7245):410-413 [33]Xian M, Xu Y, Ouyang X, et al.Segmented cylindrical vector beams for massively-encoded optical data storage[J].Science Bulletin, 2020, 65(24):2072-2079 [34]Gu M, Li X, Cao Y.Optical storage arrays: a perspective for future big data storage[J].Light: Science & Applications, 2014, 3(5):e177-e177 [35]Li J X, Xu Y, Dai Q F, et al.Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling[J].Laser & Photonics Reviews, 2016, 10(5):826-834 [36]Zhang Y, Han J, Shi L, et al.Extremely polarized and efficient hot electron intraband luminescence from aluminum nanostructures for nonlinear optical encoding[J].Laser & Photonics Reviews, 2021, 15(1):2000339- [37]Li X, Lan T H, Tien C H, et al.Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J].Nature Communications, 2012, 3(1):1-6 [38]Zhu L, Cao Y, Chen Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. arXiv prep.[J].rXiv:2104.05903, 2021., rint, :- [39]Li X, Chon J W M, Evans R A, et al.Quantum-rod dispersed photopolymers for multi-dimensional photonic applications[J].Optics Express, 2009, 17(4):2954-2961 [40]Deng Z L, Tu Q A, Wang Y, et al.Vectorial Compound Metapixels for Arbitrary Nonorthogonal Polarization Steganography[J]. Advanced Materials, 2021: 2103472. [41]Li X, Chon J W M, Wu S, et al.Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer[J].Optics Letters, 2007, 32(3):277-279 [42]Ouyang X, Xu Y, Feng Z, et al.Polychromatic and polarized multilevel optical data storage[J].Nanoscale, 2019, 11(5):2447-2452 [43]Cumpston B H, Ananthavel S P, Barlow S, et al.Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J].Nature, 1999, 398(6722):51-54 [44]欧阳旭, 徐毅, 冼铭聪, 曹耀宇, 戴峭峰, 李向平, 兰胜.基于无序金纳米棒编码的多维光信息存储[J].光电工程, 2019, 46(03):57-69 [45]Deng Z L, Jin M, Ye X, et al.Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J].Advanced Functional Materials, 2020, 30(21):1910610- [46]柯熙政, 郭新龙.用光束轨道角动量实现相位信息编码[J].量子电子学报, 2015, 32(01):69-76 [47]张文浩, 李成, 李威, 赵生妹.均衡下非对齐光子轨道角动量复用通信系统性能研究[J].量子电子学报, 2018, 35(06):723-729 [48]Zhan Q.Cylindrical vector beams: from mathematical concepts to applications[J].Advances in Optics and Photonics, 2009, 1(1):1-57 [49]Chong A, Wan C, Chen J, et al.Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J].Nature Photonics, 2020, 14(6):350-354 [50]Karimi E, Schulz S A, De Leon I, et al.Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J].Light: Science & Applications, 2014, 3(5):e167-e167 [51]Marrucci L, Karimi E, Slussarenko S, et al.Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J].Journal of Optics, 2011, 13(6):064001- [52]Ni J, Huang C, Zhou L M, et al.Multidimensional phase singularities in nanophotonics[J].Science, 2021, 374(6566):e-a [53]Sroor H, Huang Y W, Sephton B, et al.High-purity orbital angular momentum states from a visible metasurface laser[J].Nature Photonics, 2020, 14(8):498-503 [54]Forbes A, de Oliveira M, Dennis M R.Structured light[J].Nature Photonics, 2021, 15(4):253-262 [55]Cai X, Wang J, Strain M J, et al.Integrated compact optical vortex beam emitters[J].Science, 2012, 338(6105):363-366 [56]Barreiro J T, Wei T C, Kwiat P G.Beating the channel capacity limit for linear photonic superdense coding[J].Nature physics, 2008, 4(4):282-286 [57]Wang J, Yang J Y, Fazal I M, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing[J].Nature Photonics, 2012, 6(7):488-496 [58]Yan Y, Xie G, Lavery M P J, et al.High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J].Nature Communications, 2014, 5(1):1-9 [59]Bozinovic N, Yue Y, Ren Y, et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers[J].Science, 2013, 340(6140):1545-1548 [60]Ren H, Li X, Zhang Q, et al.On-chip noninterference angular momentum multiplexing of broadband light[J].Science, 2016, 352(6287):805-809 [61]Ouyang X, Xu Y, Xian M, et al.Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature. Photonics. (2021). https://doi.org/10.1038/s41566-021-00880-1 [62]Shen Y, Wang X, Xie Z, et al.Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J].Light: Science & Applications, 2019, 8(1):1-29 [63]Yang Q, Xie Z, Zhang M, et al. Generating tightly focused perfect optical vortex for ultra-secure optical encryption[J]. arXiv prep.[J].rXiv:2111.00773, 2021., rint, :- [64]Wen Y, Chremmos I, Chen Y, et al.Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J].Physical review letters, 2018, 120(19):193904- [65]Yue Z, Ren H, Wei S, et al.Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film[J].Nature communications, 2018, 9(1):1-7 [66]Zhang M, Ren H, Ouyang X, et al.Nanointerferometric Discrimination of the Spin–Orbit Hall Effect[J].ACS Photonics, 2021, 8(4):1169-1174 [67]Rubinsztein-Dunlop H, Forbes A, Berry M V, et al.Roadmap on structured light[J].Journal of Optics, 2016, 19(1):013001- [68]胡涛, 潘孙翔, 王乐, 赵生妹.水下湍流对轨道角动量通信系统信道容量的影响[J].量子电子学报, 2018, 35(04):499-506 [69]Fang X, Ren H, Gu M.Orbital angular momentum holography for high-security encryption[J].Nature Photonics, 2020, 14(2):102-108 [70]Bliokh K Y, Rodríguez-Fortu?o F J, Nori F, et al.Spin–orbit interactions of light[J].Nature Photonics, 2015, 9(12):796-808 [71]Ren H, Briere G, Fang X, et al.Metasurface orbital angular momentum holography[J].Nature Communications, 2019, 10(1):1-8 |
[1] | LIN Bing , FAN Xueqiang , LI Dekui , PENG Zhiyong , GUO Zhongyi ∗. Research Progress of imaging through scattering media based on the deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 880-898. |
[2] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[3] | CHEN Rongquan ∗ , CHEN Yuanfu , WANG Qing , WU Zhigang . Propagation properties of off-axis multi-vortex-Gaussian beams in negative refractive index media [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 795-805. |
[4] | WANG Xinghua, CHEN Rongquan∗, WANG Qing. Complex variable Hermite-Gaussian spatial solitons of different orders in strong nonlocal media [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 459-466. |
[5] | XU Xiaoyin, LIU Shengshuai, JING Jietai, . Experimental generation of optical orbital-angular-momentum multiplexed entanglement and its applications [J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 182-196. |
[6] | SUN Yifan, CHEN Tian, ZHANG Zhuo, KONG Lingjun, ZHANG Xiangdong∗. Classical optical correlation in beam fields with orbital angular momentum and its application [J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 197-224. |
[7] | CHENG Ke, HU Xiaonan, HE Yu, MENG Weijia, LUAN Haitao, GU Min, FANG Xinyuan, . Detecting orbital angular momentum of perfect optical vortex beams based on diffraction neural networks [J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 262-271. |
[8] | HU Haifeng, ZHAN Qiwen∗. Chirality measurements using orbital angular momentum of light [J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 272-285. |
[9] | XU Kai ♯ , CAO Huan , ♯ , ZHANG Chao ∗ , HU Xiaomin , HUANG Yunfeng ∗ , LIU Biheng , LI Chuanfeng ∗. Recent advances in transmission of photonic orbital angular momentum quantum state [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3-31. |
[10] | ZHOU Zhiyuan ∗ , SHI Baosen ∗. Recent progress on frequency conversion of orbital angular momentum carrying light [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 32-49. |
[11] | WU Yijing , YU Panpan , LIU Yifan , WANG Ziqiang , LI Yinmei , , GONG Lei , ∗. Review of spin-orbit angular momentum interaction in tightly focused fields [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 81-95. |
[12] | RU Shihao , , WANG Xiao , , WANG Yunlong , , WANG Feiran , , LIU Ruifeng , , ZHANG Pei , , LI Fuli , ∗. Quantum Manipulation and Application of Photon Orbital Angular Momentum [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 96-109. |
[13] | FAN Haihao , ZHU Liuhao , TAI Yuping , LI Xinzhong , ∗. Orbital angular momentum of higher-order diffraction beams [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 127-135. |
[14] | JIANG Jiaqi, Carmelo Rosales-Guzman, ZHU Zhihan ∗. Perfect flattop vortex beams [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 136-141. |
[15] | CHEN Bo , ∗ , LIU Jin , . Properties of a point light source in microring resonator with orbital angular momentum [J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||