Chinese Journal of Quantum Electronics ›› 2022, Vol. 39 ›› Issue (2): 272-285.doi: 10.3969/j.issn.1007-5461.2022.02.007
Previous Articles Next Articles
HU Haifeng, ZHAN Qiwen∗
Received:
2021-10-29
Revised:
2021-12-16
Published:
2022-03-28
Online:
2022-03-28
CLC Number:
HU Haifeng, ZHAN Qiwen∗. Chirality measurements using orbital angular momentum of light[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 272-285.
[1] Barron L D, Molecular light scattering and optical activity[M].England, Cambridge: Cambridge University Press 2004. [2]Mun J, et al.Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena[J].Light-Science & Applications, 2020, 9(1):139-139 [3]Tang Y Q, Cohen A E.Optical Chirality and Its Interaction with Matter[J].Physical Review Letters, 2010, 104(16):163901-163901 [4]Tang Y Q, Cohen A E.Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light[J].Science, 2011, 332(6027):333-336 [5]Yao A M, Padgett M J.Orbital angular momentum: origins,behavior and applications[J][J].Advances in Optics and Photonics, 2011, 3(2):161-204 [6]Wang J, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing[J].Nature Photonics, 2012, 6(7):488-496 [7]Chen Y, et al.Underwater transmission of high-dimensional twisted photons over 55 meters[J].PhotoniX, 2020, 1(1):5-5 [8]Fu S, et al.Universal orbital angular momentum spectrum analyzer for beams[J].PhotoniX, 2020, 1(1):19-19 [9]Allen L, et al.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J].Physical Review A, 1992, 45(11):8185-8189 [10]Zhan Q W.Cylindrical vector beams: from mathematical concepts to applications[J][J].Advances in Optics and Photonics, 2009, 1(1):1-57 [11]Alexandrescu A, Cojoc D, Fabrizio E D.Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams[J].Physical Review Letters, 2006, 96(24):243001-243001 [12]Forbes K A, Andrews D L.Optical orbital angular momentum: twisted light and chirality[J][J].Optics Letters, 2018, 43(3):435-438 [13]Loffler W, Broer D J, Woerdman J P.Circular dichroism of cholesteric polymers and the orbital angular momentum of light[J].Physical Review A, 2011, 83(6):065801-065801 [14]Mondal P K, Deb B, Majumder S.Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules[J].Physical Review A, 2014, 89(6):063418-063418 [15]Barnett S M, et al.On the natures of the spin and orbital parts of optical angular momentum[J].Journal of Optics, 2016, 18(6):064004-064004 [16]Bliokh K Y, et al.Spin-orbit interactions of light[J].Nature Photonics, 2015, 9(12):796-808 [17] Otte E, et al.Entanglement beating in free space through spin-orbit coupling[J][J].Light-Science & Applications, 2018, 7:18009-18009 [18]Harris A B, Kamien R D, Lubensky T C.Molecular chirality and chiral parameters[J].Reviews of Modern Physics, 1999, 71(5):1745-1757 [19]Babiker M, et al.Orbital angular momentum exchange in the interaction of twisted light with molecules[J].Physical Review Letters, 2002, 89(14):143601-143601 [20] Araoka F, et al.Interactions of twisted light with chiral molecules: An experimental investigation[J][J].Physical Review A, 2005, 71(5):055401-055401 [21]Reddy I V A K, et al.Interaction of Structured Light with a Chiral Plasmonic Metasurface: Giant Enhancement of Chiro-Optic Response[J].ACS Photonics, 2018, 5(3):734-740 [22] Zambrana-Puyalto X, Vidal X, Molina-Terriza G.Angular momentum-induced circular dichroism in non-chiral nanostructures[J].[J].Nature Communications, 2014, 5:4922-4922 [23]Wang S A, et al.Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring[J].IEEE Photonics Journal, 2018, 10(1):1-10 [24] Afanasev A, Carlson C E, Solyanik M.Circular dichroism of twisted photons in non-chiral atomic matter[J][J].Journal of Optics, 2017, 19(10):105401-105401 [25] van Veenendaal M, McNulty I.Prediction of strong dichroism induced by x rays carrying orbital momentum[J][J].Physical Review Letters, 2007, 98(15):157401-157401 [26]Romero L C D, Andrews D L, Babiker M.A quantum electrodynamics framework for the nonlinear optics of twisted beams[J].Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2):S66-S72 [27]Forbes K A.Raman Optical Activity Using Twisted Photons[J].Physical Review Letters, 2019, 122(10):103201-103201 [28] Brullot W, et al.Resolving enantiomers using the optical angular momentum of twisted light[J]. [J].Science Advances, 2016, 2(3):e1501349-e1501349 [29]Wozniak P, et al.Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer[J].Optica, 2019, 6(8):961-965 [30] Vazquez-Guardado A, Chanda D.Superchiral Light Generation on Degenerate Achiral Surfaces[J][J].Physical Review Letters, 2018, 120(13):137601-137601 [31] Zhao Y, et al.Chirality detection of enantiomers using twisted optical metamaterials[J][J].Nature Communications, 2017, 8:14180-14180 [32]Yao K, Liu Y M.Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers[J].Nanoscale, 2018, 10(18):8779-8786 [33]Rui G H, et al.Symmetric Meta-Absorber-Induced Superchirality[J].Advanced Optical Materials, 2019, 7(21):1970080-1970080 [34] Wu T, Wang R Y, Zhang X D.Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light[J].[J].Scientific Reports,, 2015, 5:18003-18003 [35]Hu H F, Gan Q Q, Zhan Q W.Generation of a Nondiffracting Superchiral Optical Needle for Circular Dichroism Imaging of Sparse Subdiffraction Objects[J].Physical Review Letters, 2019, 122(22):223901-223901 [36]Rui G H, et al.Enhanced circular dichroism of sparse nanoobjects by localized superchiral optical field[J].Journal of Optics, 2021, 23(6):065002-065002 [37] Mishchenko M I, Travis L D, Lacis A A.Scattering, Absorption and Emission of Light by Small Particles[M].England, Cambridge: Cambridge University Press, 2002. [38] Lindell I V, et al.Electromagnetic Waves in Chiral and Bi-Isotropic Media[M], USA, Boston: Artech House, 1994. [39] Bohren C F.Light scattering by an optically active sphere[J].[J].Chemical Physics Letters, 1974, 29:458-562 [40]Hu H F and Zhan Q W.Enhanced Chiral Mie Scattering by a Dielectric Sphere within a Superchiral Light Field[J].Physics, 2021, 3(3):747-756 [41] Ni J C, et al.Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures[J][J].PNAS, 2021, 118(2):e2020055118-e2020055118 [42]Ye L Z, et al.Enhancing Circular Dichroism Signals with Vector Beams[J].Physical Review Letters, 2021, 126(12):123001-123001 [43]Li M M, et al.Generation of controllable chiral optical fields by vector beams[J].Nanoscale, 2020, 12(28):15453-15459 [44] Ayuso D, et al.Synthetic chiral light for efficient control of chiral light-matter interaction[J][J].Nature Photonics, 2019, 13(12):866-871 [45]Neufeld O, Tzur M E, Cohen O.Degree of chirality of electromagnetic fields and maximally chiral light[J].Physical Review A, 2020, 101(5):053831-053831 [46]Chong A, et al.Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J].Nature Photonics, 2020, 14(6):350-354 [47]Chen J, et al.Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum[J].Optics Express, 2020, 28(12):18472-18478 [48] Wan C, et al.Photonic orbital angular momentum with controllable orientation[J][J].National Science Review,, 2021, :nwab149.-nwab149. [49]Wan C H, et al.Generation of ultrafast spatiotemporal wave packet embedded with time -varying orbital angular momentum[J].Science Bulletin, 2020, 65(16):1334-1336 |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[13] | CHEN Rongquan ∗ , CHEN Yuanfu , WANG Qing , WU Zhigang . Propagation properties of off-axis multi-vortex-Gaussian beams in negative refractive index media [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 795-805. |
[14] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[15] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||