Chinese Journal of Quantum Electronics ›› 2024, Vol. 41 ›› Issue (1): 1-25.doi: 10.3969/j.issn.1007-5461.2024.01.001
• Review • Next Articles
WANG Shengbin 1,2, DOU Menghan 1, WU Yuchun 2*, GUO Guoping 1,2*, GUO Guangcan 2
Received:
2023-09-13
Revised:
2023-10-28
Published:
2024-01-28
Online:
2024-01-28
Contact:
E-mail: wuyuchun@ustc.edu.cn; gpguo@ustc.edu.cn
E-mail:E-mail: wuyuchun@ustc.edu.cn; gpguo@ustc.edu.cn
CLC Number:
WANG Shengbin , DOU Menghan , WU Yuchun , GUO Guoping , GUO Guangcan . Research progress of distributed quantum computing[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 1-25.
[1] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring [C]. Proceedings 35th annual symposium on foundations of computer science. IEEE, 1994: 124-134.[2] Grover L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Physical Review Letters, 1997, 79(2): 325.[3] Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103(15): 150502.[4] Lambert N, Chen Y N, Cheng Y C, et al. Quantum biology [J]. Nature Physics, 2013, 9(1): 10-18.[5] Nielsen M A, Chuang I L. Quantum computation and quantum information [M]. Cambridge university press, 2010.[6] Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning [J]. Nature, 2017, 549(7671): 195-202.[7] Daley A J, Bloch I, Kokail C, et al. Practical quantum advantage in quantum simulation [J]. Nature, 2022, 607(7920): 667-676.[8] Babbush R, Huggins W J, Berry D W, et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods [J]. Nature Communications, 2023, 14(1): 4058.[9] Herman D, Googin C, Liu X, et al. Quantum computing for finance [J]. Nature Reviews Physics, 2023: 1-16.[10] Fowler A G, Mariantoni M, Martinis J M, et al. Surface codes: Towards practical large-scale quantum computation [J]. Physical Review A, 2012, 86(3): 032324.[11] Kivlichan I D, Gidney C, Berry D W, et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization [J]. Quantum, 2020, 4: 296.[12] Lee J, Berry D W, Gidney C, et al. Even more efficient quantum computations of chemistry through tensor hypercontraction [J]. PRX Quantum, 2021, 2(3): 030305.[13] Gidney C, Eker? M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits [J]. Quantum, 2021, 5: 433.[14] Higgott O, Breuckmann N P. Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead [J]. Physical Review X, 2021, 11(3): 031039.[15] Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics [J]. Reviews of Modern Physics, 2013, 85(3): 961.[16] Van Meter R, Devitt S J. Local and distributed quantum computation [OL]. 2016, arXiv:1605.06951, https://arxiv.org/abs/1605.06951.[17] Zhang X, Li H O, Cao G, et al. Semiconductor quantum computation [J]. National Science Review, 2019, 6(1): 32-54.[18] Gibney E. Underdog tech makes gains in quantum computer race [J]. Nature, 2020, 587(7834): 342-343.[19] Wang P, Luan C Y, Qiao M, et al. Single ion qubit with estimated coherence time exceeding one hour [J]. Nature Communications, 2021, 12(1): 233.[20] Li X W, Fu X, Yan F, et al. Current Status and Future Development of Quantum Computation [J]. Strategic Study of CAE, 2022, 24(4): 133-144(in Chinese).李晓巍, 付祥, 燕飞, 等. 量子计算研究现状与未来发展 [J]. 中国工程科学, 2022, 24(4): 133-144.[21] Pelofske E, B?rtschi A, Eidenbenz S. Quantum volume in practice: What users can expect from nisq devices [J]. IEEE Transactions on Quantum Engineering, 2022, 3: 1-19.[22] Philips S G J, M?dzik M T, Amitonov S V, et al. Universal control of a six-qubit quantum processor in silicon [J]. Nature, 2022, 609(7929): 919-924.[23] Benhelm J, Kirchmair G, Roos C F, et al. Towards fault-tolerant quantum computing with trapped ions [J]. Nature Physics, 2008, 4(6): 463-466.[24] Linke N M, Gutierrez M, Landsman K A, et al. Fault-tolerant quantum error detection [J]. Science Advances, 2017, 3(10): e1701074.[25] Barends R, Kelly J, Megrant A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance [J]. Nature, 2014, 508(7497): 500-503.[26] Takita M, Cross A W, Córcoles A D, et al. Experimental demonstration of fault-tolerant state preparation with superconducting qubits [J]. Physical Review Letters, 2017, 119(18): 180501.[27] IBM quantum, https://quantum-computing.ibm.com/services/resources?system=ibm_seattle[28] quafu, https://quafu.baqis.ac.cn/#/computerDetail/mapView?system_id=2&type=ScQ-P136[29] Malinowski M, Allcock D T C, Ballance C J. How to wire a 1000-qubit trapped ion quantum computer [OL]. 2023, arXiv:2305.12773, https://arxiv.org/abs/2305.12773.[30] Ovide A, Rodrigo S, Bandic M, et al. Mapping quantum algorithms to multi-core quantum computing architectures [OL]. 2023, arXiv:2303.16125, https://arxiv.org/abs/2303.16125.[31] Kimble H J. The quantum internet [J]. Nature, 2008, 453(7198): 1023-1030.[32] Wehner S, Elkouss D, Hanson R. Quantum internet: A vision for the road ahead [J]. Science, 2018, 362(6412): eaam9288.[33] Cacciapuoti A S, Caleffi M, Tafuri F, et al. Quantum internet: Networking challenges in distributed quantum computing [J]. IEEE Network, 2019, 34(1): 137-143.[34] Avis G, Rozp?dek F, Wehner S. Analysis of multipartite entanglement distribution using a central quantum-network node [J]. Physical Review A, 2023, 107(1): 012609.[35] Yepez J. Type-II quantum computers [J]. International Journal of Modern Physics C, 2001, 12(09): 1273-1284.[36] Caleffi M, Amoretti M, Ferrari D, et al. Distributed quantum computing: a survey [OL]. 2022, arXiv:2212.10609, https://arxiv.org/abs/2212.10609.[37] Cleve R, Buhrman H. Substituting quantum entanglement for communication [J]. Physical Review A, 1997, 56(2): 1201.[38] Cuomo D, Caleffi M, Cacciapuoti A S. Towards a distributed quantum computing ecosystem [J]. IET Quantum Communication, 2020, 1(1): 3-8.[39] Van Meter R, Ladd T D, Fowler A G, et al. Distributed quantum computation architecture using semiconductor nanophotonics [J]. International Journal of Quantum Information, 2010, 8(01n02): 295-323.[40] Bravyi S, Smith G, Smolin J A. Trading classical and quantum computational resources [J]. Physical Review X, 2016, 6(2): 021043.[41] Fujii K, Mizuta K, Ueda H, et al. Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers [J]. PRX Quantum, 2022, 3(1): 010346.[42] Dunjko V, Ge Y, Cirac J I. Computational speedups using small quantum devices [J]. Physical Review Letters, 2018, 121(25): 250501.[43] Ge Y, Dunjko V. A hybrid algorithm framework for small quantum computers with application to finding Hamiltonian cycles [J]. Journal of Mathematical Physics, 2020, 61(1).[44] Li J, Alam M, Ghosh S. Large-scale quantum approximate optimization via divide-and-conquer [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.[45] Hua F, Jin Y, Chen Y, et al. Exploiting qubit reuse through mid-circuit measurement and reset [OL]. 2022, arXiv:2211.01925, https://arxiv.org/abs/2211.01925.[46] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters, 1993, 70(13): 1895.[47] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? [J]. Physical Review, 1935, 47(10): 777.[48] Wootters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature, 1982, 299(5886): 802-803.[49] Gottesman D, Chuang I L. Quantum teleportation is a universal computational primitive [OL]. 1999, arXiv:quant-ph/9908010, https://arxiv.org/abs/quant-ph/9908010.[50] Zukowski M, Zeilinger A, Horne M, et al. " Event-ready-detectors" Bell experiment via entanglement swapping [J]. Physical Review Letters, 1993, 71(26).[51] Cuomo D, Caleffi M, Krsulich K, et al. Optimized compiler for distributed quantum computing [J]. ACM Transactions on Quantum Computing, 2023, 4(2): 1-29.[52] Eisert J, Jacobs K, Papadopoulos P, et al. Optimal local implementation of nonlocal quantum gates [J]. Physical Review A, 2000, 62(5): 052317.[53] Yimsiriwattana A, Lomonaco Jr S J. Generalized GHZ states and distributed quantum computing [OL]. 2004, arXiv:quant-ph/0402148, https://arxiv.org/abs/quant-ph/0402148.[54] Yimsiriwattana A, Lomonaco Jr S J. Distributed quantum computing: A distributed Shor algorithm [C]. Quantum Information and Computation II. SPIE, 2004, 5436: 360-372.[55] Chou K S, Blumoff J Z, Wang C S, et al. Deterministic teleportation of a quantum gate between two logical qubits [J]. Nature, 2018, 561(7723): 368-373.[56] Liu X, Hu X M, Zhu T X, et al. Distributed quantum computing over 7.0 km [OL]. 2023, arXiv:2307.15634, https://arxiv.org/abs/2307.15634.[57] Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters, 1998, 80(6): 1121.[58] Popescu S. An optical method for teleportation [OL]. 1995, arXiv:quant-ph/9501020, https://arxiv.org/abs/quant-ph/9501020.[59] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation [J]. Nature, 1997, 390(6660): 575-579.[60] Nielsen M A, Knill E, Laflamme R. Complete quantum teleportation using nuclear magnetic resonance [J]. Nature, 1998, 396(6706): 52-55.[61] Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics [J]. Nature, 2001, 414(6862): 413-418.[62] Riebe M, H?ffner H, Roos C F, et al. Deterministic quantum teleportation with atoms [J]. Nature, 2004, 429(6993): 734-737.[63] Kurpiers P, Magnard P, Walter T, et al. Deterministic quantum state transfer and remote entanglement using microwave photons [J]. Nature, 2018, 558(7709): 264-267.[64] Brunner N, Cavalcanti D, Pironio S, et al. Bell nonlocality[J]. Reviews of Modern Physics, 2014, 86(2): 419.[65] Wittmann B, Ramelow S, Steinlechner F, et al. Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering [J]. New Journal of Physics, 2012, 14(5): 053030.[66] Hensen B, Bernien H, Dréau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres [J]. Nature, 2015, 526(7575): 682-686.[67] Giustina M, Versteegh M A M, Wengerowsky S, et al. Significant-loophole-free test of Bell’s theorem with entangled photons [J]. Physical Review Letters, 2015, 115(25): 250401.[68] Li M H, Wu C, Zhang Y, et al. Test of local realism into the past without detection and locality loopholes [J]. Physical Review Letters, 2018, 121(8): 080404.[69] Rosenfeld W, Burchardt D, Garthoff R, et al. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes [J]. Physical Review Letters, 2017, 119(1): 010402.[70] Storz S, Sch?r J, Kulikov A, et al. Loophole-free Bell inequality violation with superconducting circuits [J]. Nature, 2023, 617(7960): 265-270.[71] Duan L M, Madsen M J, Moehring D L, et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits [J]. Physical Review A, 2006, 73(6): 062324.[72] Wan Y, Kienzler D, Erickson S D, et al. Quantum gate teleportation between separated qubits in a trapped-ion processor [J]. Science, 2019, 364(6443): 875-878.[73] Qiu J, Liu Y, Niu J, et al. Deterministic quantum teleportation between distant superconducting chips [OL]. 2023, arXiv:2302.08756, https://arxiv.org/abs/2302.08756.[74] Hucul D, Inlek I V, Vittorini G, et al. Modular entanglement of atomic qubits using photons and phonons [J]. Nature Physics, 2015, 11(1): 37-42.[75] Zhong Y, Chang H S, Bienfait A, et al. Deterministic multi-qubit entanglement in a quantum network [J]. Nature, 2021, 590(7847): 571-575.[76] Daiss S, Langenfeld S, Welte S, et al. A quantum-logic gate between distant quantum-network modules [J]. Science, 2021, 371(6529): 614-617.[77] Krutyanskiy V, Galli M, Krcmarsky V, et al. Entanglement of trapped-ion qubits separated by 230 meters [J]. Physical Review Letters, 2023, 130(5): 050803.[78] Sahu R, Qiu L, Hease W, et al. Entangling microwaves with light [J]. Science, 2023, 380(6646): 718-721.[79] Gyongyosi L, Imre S. Scalable distributed gate-model quantum computers [J]. Scientific Reports, 2021, 11(1): 5172.[80] H?ner T, Steiger D S, Hoefler T, et al. Distributed quantum computing with qmpi [C]. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2021: 1-13.[81] Davarzani Z, Zomorodi M, Houshmand M. A hierarchical approach for building distributed quantum systems [J]. Scientific Reports, 2022, 12(1): 15421.[82] Grover L K. Quantum telecomputation [OL]. 1997, arXiv:quant-ph/9704012, https://arxiv.org/abs/quant-ph?9704012.[83] Meter III R D V. Architecture of a quantum multicomputer optimized for shor's factoring algorithm [OL]. 2006, arXiv:quant-ph/0607065, https://arxiv.org/abs/quant-ph/0607065.[84] Van Meter R, Nemoto K, Munro W J, et al. Distributed arithmetic on a quantum multicomputer [J]. ACM SIGARCH Computer Architecture News, 2006, 34(2): 354-365.[85] Sheng Y B, Zhou L. Distributed secure quantum machine learning [J]. Science Bulletin, 2017, 62(14): 1025-1029.[86] DiAdamo S, Ghibaudi M, Cruise J. Distributed quantum computing and network control for accelerated vqe [J]. IEEE Transactions on Quantum Engineering, 2021, 2: 1-21.[87] Xiao L, Qiu D, Luo L, et al. Distributed Shor's algorithm [J]. Quantum Information and Computation, 2023, 23(1&2): 0027-0044.[88] Tani S, Kobayashi H, Matsumoto K. Exact Quantum Algorithms for the Leader Election Problem [OL]. 2007, arXiv: 0712.4213, https://arxiv.org/abs/0712.4213.[89] Elkin M, Klauck H, Nanongkai D, et al. Can quantum communication speed up distributed computation? [C]. Proceedings of the 2014 ACM symposium on Principles of distributed computing. 2014: 166-175.[90] Izumi T, Le Gall F. Quantum distributed algorithm for the All-Pairs Shortest Path problem in the CONGEST-CLIQUE model [C]. Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. 2019: 84-93.[91] van Apeldoorn J, de Vos T. A framework for distributed quantum queries in the CONGEST model [C]. Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing. 2022: 109-119.[92] Wu X, Yao P. Quantum Complexity of Weighted Diameter and Radius in CONGEST Networks [C]. Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing. 2022: 120-130.[93] Zomorodi-Moghadam M, Houshmand M, Houshmand M. Optimizing teleportation cost in distributed quantum circuits [J]. International Journal of Theoretical Physics, 2018, 57: 848-861.[94] Andres-Martinez P, Heunen C. Automated distribution of quantum circuits via hypergraph partitioning [J]. Physical Review A, 2019, 100(3): 032308.[95] Dadkhah D, Zomorodi M, Hosseini S E. A new approach for optimization of distributed quantum circuits [J]. International Journal of Theoretical Physics, 2021, 60: 3271-3285.[96] Ferrari D, Cacciapuoti A S, Amoretti M, et al. Compiler design for distributed quantum computing [J]. IEEE Transactions on Quantum Engineering, 2021, 2: 1-20.[97] G Sundaram R, Gupta H, Ramakrishnan C R. Efficient distribution of quantum circuits [C]. 35th International Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.[98] Dadkhah D, Zomorodi M, Hosseini S E, et al. Reordering and partitioning of distributed quantum circuits [J]. IEEE Access, 2022, 10: 70329-70341.[99] Sundaram R G, Gupta H, Ramakrishnan C R. Distribution of quantum circuits over general quantum networks [C]. 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022: 415-425.[100] Ferrari D, Carretta S, Amoretti M. A Modular Quantum Compilation Framework for Distributed Quantum Computing [OL]. 2023, arXiv:2305.02969, https://arxiv.org/abs/2305.02969.[101] Peng T, Harrow A W, Ozols M, et al. Simulating large quantum circuits on a small quantum computer [J]. Physical Review Letters, 2020, 125(15): 150504.[102] Mitarai K, Fujii K. Constructing a virtual two-qubit gate by sampling single-qubit operations [J]. New Journal of Physics, 2021, 23(2): 023021.[103] Perlin M, Tomesh T, Pearlman B, et al. Parallelizing Simulations of Large Quantum Circuits [J]. 2019, https://sc19.supercomputing.[104] Ayral T, Le Régent F M, Saleem Z, et al. Quantum divide and compute: Hardware demonstrations and noisy simulations [C]. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2020: 138-140.[105] Ayral T, Régent F M L, Saleem Z, et al. Quantum divide and compute: exploring the effect of different noise sources [J]. SN Computer Science, 2021, 2(3): 132.[106] Eddins A, Motta M, Gujarati T P, et al. Doubling the size of quantum simulators by entanglement forging [J]. PRX Quantum, 2022, 3(1): 010309.[107] Huembeli P, Carleo G, Mezzacapo A. Entanglement Forging with generative neural network models [OL]. 2022, arXiv:2205.00933, https://arxiv.org/abs/2205.00933.[108] Piveteau C, Sutter D. Circuit knitting with classical communication [C]. Quantum Information Processing Conference. 2023.[109] Lowe A, Medvidovi? M, Hayes A, et al. Fast quantum circuit cutting with randomized measurements [J]. Quantum, 2023, 7: 934.[110] Van Den Berg E. A simple method for sampling random Clifford operators [C]. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021: 54-59.[111] Brenner L, Piveteau C, Sutter D. Optimal wire cutting with classical communication [OL]. 2023, arXiv:2302.03366, https://arxiv.org/abs/2302.03366.[112] Chen D T, Hansen E H, Li X, et al. Efficient Quantum Circuit Cutting by Neglecting Basis Elements [OL]. 2023, arXiv:2304.04093, https://arxiv.org/abs/2304.04093.[113] Harada H, Wada K, Yamamoto N. Optimal parallel wire cutting without ancilla qubits [J]. 2023, arXiv:2303.07340, https://arxiv.org/abs/2303.07340.[114] Pednault E. An alternative approach to optimal wire cutting without ancilla qubits [J]. 2023, arXiv:2303.08287, https://arxiv.org/abs/2303.08287.[115] Perlin M A, Saleem Z H, Suchara M, et al. Quantum circuit cutting with maximum-likelihood tomography [J]. npj Quantum Information, 2021, 7(1): 64.[116] Tang W, Tomesh T, Suchara M, et al. Cutqc: using small quantum computers for large quantum circuit evaluations [C]. Proceedings of the 26th ACM International conference on architectural support for programming languages and operating systems. 2021: 473-486.[117] Tang W, Martonosi M. ScaleQC: A Scalable Framework for Hybrid Computation on Quantum and Classical Processors [OL]. 2022, arXiv:2207.00933, https://arxiv.org/abs/2207.00933.[118] Chen D, Baheri B, Chaudhary V, et al. Approximate quantum circuit reconstruction [C]. 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022: 509-515.[119] Kandala A, Mezzacapo A, Temme K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets [J]. Nature, 2017, 549(7671): 242-246.[120] Ying C, Cheng B, Zhao Y, et al. Experimental simulation of larger quantum circuits with fewer superconducting qubits [J]. Physical Review Letters, 2023, 130(11): 110601.[121] Guala D, Zhang S, Cruz E, et al. Practical overview of image classification with tensor-network quantum circuits [J]. Scientific Reports, 2023, 13(1): 4427.[122] Liu J, Gonzales A, Saleem Z H. Classical simulators as quantum error mitigators via circuit cutting [OL]. 2022, arXiv:2212.07335, https://arxiv.org/abs/2212.07335.[123] Chen D T, Saleem Z H, Perlin M A. Quantum Divide and Conquer for Classical Shadows [OL]. 2022, arXiv:2212.00761, https://arxiv.org/abs/2212.00761.[124] Smith K N, Perlin M A, Gokhale P, et al. Clifford-based Circuit Cutting for Quantum Simulation [C]. Proceedings of the 50th Annual International Symposium on Computer Architecture. 2023: 1-13.[125] Chatterjee T, Das A, Mohtashim S I, et al. Qurzon: A Prototype for a Divide and Conquer-Based Quantum Compiler for Distributed Quantum Systems [J]. SN Computer Science, 2022, 3(4): 323.[126] Basu S, Saha A, Chakrabarti A, et al. i-QER: An intelligent approach towards quantum error reduction [J]. ACM Transactions on Quantum Computing, 2022, 3(4): 1-18. |
[1] | LIU Xueming , CHEN Yongcong , AO Ping. Quantum control optimization in thermal noise environment [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 103-112. |
[2] | YANG Han , FENG Yan , XIE Sijiang , . Quantum auction protocol based on semi⁃quantum secure direct communication [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 125-134. |
[3] | XIANG Shengjian , CHEN Yunsong . Quantum teleportation with weak and recover measurement in memory amplitude damping noise channel [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 143-150. |
[4] | YANG Donghan , LI Zhiqiang , WU Xi , PAN Wenjie , YANG Hui. Optimization of Oracle circuits based on minimum weight and template matching [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 151-160. |
[5] | NIU Yiren , GUAN Zhijin , LI Haifeng , LU Junyu. A conversion method for improving fidelity of quantum circuits [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 161-169. |
[6] | WANG Shuo , PAN Jiazheng , WEI Xingyu , JIANG Junliang , ZHANG Kaixuan , LI Zishuo , GUO Tingting , XU Wenqu , ZUO Quan , ZHOU Tianshi , SHENG Yifan , SUN Guozhu , WU Peiheng , . FPGA⁃based linear detection and characterization of microwave coherent source [J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 850-857. |
[7] | HU Qianqian , FENG Bao , YAN Longchuan , ZHAO Xiaohong , CHEN Zhiyu , LI Wenting , LI Wei . HU Qianqian 1,2, FENG Bao 1,2, YAN Longchuan 3, ZHAO Xiaohong 4, CHEN Zhiyu 3, LI Wenting 5, LI Wei 5* [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 712-718. |
[8] | ZHANG Bo , QU Diqing , LUO Jun , DU Xiangjian , FANG Yuqiang , JIANG Lianjun , GAO Song , YU Lin , SUN Fang , TANG Shibiao . A defense scheme of pulse illumination attack for quantum key distribution systems [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 719-725. |
[9] | HUANG Guan , LOU Xiaoping. Semi⁃quantum private comparison protocol based on four⁃particle GHZ state [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 726-737. |
[10] | TANG Qimei. Design of quaternary quantum reversible half⁃adder, full⁃adder and parallel adder circuits [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 759-769. |
[11] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[12] | CAO Rui , YUAN Chengzhi , SHEN Si , ZHANG Zichang , FAN Yunru , LI Jiarui , LI Hao , YOU Lixing , ZHOU Qiang , WANG Zizhu ∗. Optimized detection of maximally entangled time-bin qutrits [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85-94. |
[13] | ZHAO Liangyuan , ∗ , CAO Lingyun , LIANG Hongyuan , WEI Zheng , WU Qianjun , QIAN Jianlin , HAN Zhengfu ∗. Research on wavelength-multiplexed quantum key distribution based on different optical fibers [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776-785. |
[14] | WU Xi, LI Zhiqiang∗. Circuit realization of Grover algorithm based on Cirq [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 431-438. |
[15] | DAI Juan∗, LI Zhiqiang, YANG Donghan. Synthesis of Deutsch-Jozsa circuits based on Cirq [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 439-445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||