| [1] Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics, 2012, 8(11): 819-824.[2] Fan H, Kumar S, Sedlacek J, et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(20): 202001.[3] Meyer D H, Castillo Z A, Cox K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(3): 034001[4] Liu B, Zhang L, Liu Z, et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnetic Science, 2023, 1(2): 1-16.[5] Yuan J, Yang W, Jing M, et al. Quantum sensing of microwave electric ?elds based on Rydberg atoms[J]. Reports on Progress in Physics, 2023.[6] Zhang H, Ma Y, Liao K, et al. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems[J]. Science Bulletin, 2024.[7] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of modern physics, 2005, 77(2): 633-673.[8] Liao K Y, Tu H T, Yang S Z, et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 2020, 101(5): 053432.[9] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(5): 2455-2462.[10] Simons M T, Haddab A H, Gordon J A, et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 2019, 114(11).[11] Schlossberger N, Prajapati N, Berweger S, et al. Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers[J]. Nature Reviews Physics, 2024: 1-15.[12] Simons M T, Artusio-Glimpse A B, Holloway C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104(3): 032824.[13] Berweger S, Prajapati N, Artusio-Glimpse A B, et al. Rydberg-state engineering: investigations of tuning schemes for continuous frequency sensing[J]. Physical Review Applied, 2023, 19(4): 044049.[14] Liu X H, Liao K Y, Zhang Z X, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 2022, 18(5): 054003.[15] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 2021, 15(1): 014053.[16] Hu J, Li H, Song R, et al. Continuously tunable radio frequency electrometry with Rydberg atoms[J]. Applied Physics Letters, 2022, 121(1).[17] Song D, Jiao Y, Hu J, et al. Continuous broadband Rydberg receiver using AC Stark shifts and Floquet states[J]. Applied Physics Letters, 2024, 125(19).[18] Deb A B, Kj?rgaard N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 2018, 112(21).[19] Holloway C L, Simons M T, Gordon J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728.[20] ?ibalic N, Adams C S. Rydberg physics[J]. Rydberg physics, 2018: 2399-2891.[21] Harris S E. Lasers without inversion: Interference of lifetime-broadened resonances[J]. Physical review letters, 1989, 62(9): 1033.[22] Imamo?lu A, Harris S E. Lasers without inversion: interference of dressed lifetime-broadened states[J]. Optics letters, 1989, 14(24): 1344-1346.[23] Jing M, Hu Y, Ma J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915.[24] Jiao Y, Han X, Fan J, et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 2019, 12(12): 126002.[25] Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 2018, 112(21).[26] Anderson D A, Sapiro R E, Gon?alves L F, et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 2022, 17(4): 044020.[27] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. arXiv preprint arXiv:1808.08589, 2018.[28] Holloway C L, Simons M T, Gordon J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and wireless propagation letters, 2019, 18(9): 1853-1857.[29] Simons M T, Haddab A H, Gordon J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE access, 2019, 7: 164975-164985.[30] Song Z, Liu H, Liu X, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 2019, 27(6): 8848-8857.[31] Holloway C L, Simons M T, Haddab A H, et al. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music[J]. AIP advances, 2019, 9(6).[32] Holloway C, Simons M, Haddab A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 2020, 63(3): 63-76.[33] Robinson A K, Prajapati N, Senic D, et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 2021, 118(11).[34] Yang K, Sun Z, Mao R, et al. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 2022, 20(8): 081203.[35] Li H, Hu J, Bai J, et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 2022, 30(8): 13522-13529.[36] Prajapati N, Rotunno A P, Berweger S, et al. TV and video game streaming with a quantum receiver: A study on a Rydberg atom-based receiver's bandwidth and reception clarity[J]. AVS Quantum Science, 2022, 4(3).[37] Liu Z K, Zhang L H, Liu B, et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature communications, 2022, 13(1): 1997.[38] Elgee P K, Hill J C, LeBlanc K J E, et al. Satellite radio detection via dual-microwave Rydberg spectroscopy[J]. Applied Physics Letters, 2023, 123(8).[39] Berweger S, Artusio-Glimpse A B, Rotunno A P, et al. Closed-loop quantum interferometry for phase-resolved Rydberg-atom field sensing[J]. Physical Review Applied, 2023, 20(5): 054009.[40] Meyer D H, Hill J C, Kunz P D, et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. Physical Review Applied, 2023, 19(1): 014025.[41] You S, Cai M, Zhang H, et al. Exclusive effect in Rydberg atom-based multi-band microwave communication[C]//photonics. MDPI, 2023, 10(3): 328.[42] Zhang P, Yuan S, Jing M, et al. Image Transmission Utilizing Amplitude Modulation in Rydberg Atomic Antenna[J]. IEEE Photonics Journal, 2024.[43] Zhang L H, Liu B, Liu Z K, et al. Ultra-wide dual-band Rydberg atomic receiver based on space division multiplexing radio-frequency chip modules[J]. Chip, 2024, 3(2): 100089.[44] Yuan S, Jing M, Zhang H, et al. Isotropic antenna based on Rydberg atoms[J]. Optics Express, 2024, 32(5): 8379-8388.[45] Cox K C, Meyer D H, Fatemi F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 2018, 121(11): 110502.[46] Shannon C E. Communication in the presence of noise[J]. Proceedings of the IRE, 1949, 37(1): 10-21.[47] Bohaichuk S M, Booth D, Nickerson K, et al. Origins of Rydberg-atom electrometer transient response and its impact on radio-frequency pulse sensing[J]. Physical Review Applied, 2022, 18(3): 034030.[48] Knarr S H, Bucklew V G, Langston J, et al. Spatiotemporal multiplexed Rydberg receiver[J]. IEEE Transactions on Quantum Engineering, 2023.[49] Yang B, Yan Y, Li X, et al. Highly sensitive microwave electrometry with enhanced instantaneous bandwidth[J]. Physical Review Applied, 2024, 21(3): L031003.[50] Kumar, Santosh, et al. "Atom-based sensing of weak radio frequency electric fields using homodyne readout." Scientific reports 7.1 (2017): 42981.[51] Prajapati, Nikunjkumar, et al. "Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping." Applied Physics Letters 119.21 (2021).[52] Holloway, Christopher L., et al. "Rydberg atom-based field sensing enhancement using a split-ring resonator." Applied Physics Letters 120.20 (2022).[53] Cai, Minghao, et al. "Sensitivity extension of atom-based amplitude-modulation microwave electrometry via high Rydberg states." Applied Physics Letters 122.16 (2023).[54] Wu S, Zhang D, Li Z, et al. Quantum-enhanced electrometer based on microwave-dressed Rydberg atoms[J]. Physical Review Applied, 2023, 20(6): 064028.[55] Tu, Hai-Tao, et al. "Approaching the standard quantum limit of a Rydberg-atom microwave electrometer." Science Advances 10.51 (2024): eads0683.[56] Ding, Dong-Sheng, et al. "Enhanced metrology at the critical point of a many-body Rydberg atomic system." Nature Physics 18.12 (2022): 1447-1452.[57] Carr, Christopher, et al. "Nonequilibrium phase transition in a dilute Rydberg ensemble." Physical review letters 111.11 (2013): 113901. |