| [1]Dixit, A.V., et al., Searching for Dark Matter with a Superconducting Qubit [J][J].Physical Review Letters, 2021, 126(14):141302[2]Cimini, V., et al., Quantum sensing for dynamical tracking of chemical processes [J][J].Physical Review A, 2019, 99(5):053817[3]Li, J., et al., Realization of a cold atom gyroscope in space [J]. National Science Review, 2025.[4]Giovannetti, V., S. Lloyd, and L. Maccone, Quantum Metrology [J]. Physical Review Letters, 2006. 96(1): 010401.[5]Giovannetti, V., S. Lloyd, and L. Maccone, Advances in quantum metrology [J]. Nature Photonics, 2011. 5(4): 222-229.[6]Yuan, H.and C.-H.F. Fung, Quantum parameter estimation with general dynamics [J]. npj Quantum Information, 2017. 3(1): 14.[7]Barbieri, M., Optical Quantum Metrology [J]. PRX Quantum, 2022. 3(1): 010202.[8]Polino, E., et al., Photonic quantum metrology [J]. AVS Quantum Science, 2020. 2(2).[9]PARIS, M.G.A., QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY [J]. International Journal of Quantum Information, 2009. 07: 125-137.[10]Szczykulska, M., T. Baumgratz, and A. Datta, Multi-parameter quantum metrology [J]. Advances in Physics: X, 2016. 1(4): 621-639.[11]Demkowicz-Dobrzański, R., W. Górecki, and M. Gu??, Multi-parameter estimation beyond quantum Fisher information [J]. Journal of Physics A: Mathematical and Theoretical, 2020. 53(36): 363001.[12]Degen, C.L., F. Reinhard, and P. Cappellaro, Quantum sensing [J]. Reviews of Modern Physics, 2017. 89(3): 035002.[13]Huang, Z., C. Lupo, and P. Kok, Quantum-Limited Estimation of Range and Velocity [J]. PRX Quantum, 2021. 2(3): 030303.[14]Parniak, M., et al., Beating the Rayleigh Limit Using Two-Photon Interference [J]. Physical Review Letters, 2018. 121(25): 250503.[15]Boixo, S., et al., Generalized Limits for Single-Parameter Quantum Estimation [J]. Physical Review Letters, 2007. 98(9): 090401.[16]Liu, J., et al., Quantum Fisher information matrix and multiparameter estimation [J]. Journal of Physics A: Mathematical and Theoretical, 2020. 53(2): 023001.[17]Xia, B., et al., Toward incompatible quantum limits on multiparameter estimation [J]. Nature Communications, 2023. 14(1): 1021.[18]Ragy, S., M. Jarzyna, and R. Demkowicz-Dobrzański, Compatibility in multiparameter quantum metrology [J]. Physical Review A, 2016. 94(5): 052108.[19]Lu, X.-M. and X. Wang, Incorporating Heisenberg' s Uncertainty Principle into Quantum Multiparameter Estimation [J]. Physical Review Letters, 2021. 126(12): 120503.[20]Bao, H., et al., Spin squeezing of 1011 atoms by prediction and retrodiction measurements [J]. Nature, 2020. 581(7807): 159-163.[21]Albarelli, F., J.F. Friel, and A. Datta, Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology [J]. Physical Review Letters, 2019. 123(20): 200503.[22]Gill, R.D. and S. Massar, State estimation for large ensembles [J]. Physical Review A, 2000. 61(4): 042312.[23]Nagaoka, H., A New Approach to Cramér-Rao Bounds for Quantum State Estimation [J]. In Asymptotic Theory of Quantum Statistical Inference. 100-112.[24]Yuan, H., Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation [J]. Physical Review Letters, 2016. 117(16): 160801.[25]Hou, Z., et al., ``Super-Heisenberg' ' and Heisenberg Scalings Achieved Simultaneously in the Estimation of a Rotating Field [J]. Physical Review Letters, 2021. 126(7): 070503.[26]Hou, Z., et al., Zero–trade-off multiparameter quantum estimation via simultaneously saturating multiple Heisenberg uncertainty relations [J]. Science Advance, 2021. 7(1): eabd2986.[27]Xu, H., et al., Generalizable control for quantum parameter estimation through reinforcement learning [J]. npj Quantum Information, 2019. 5(1): 82.[28]Yang, J., et al., Variational Principle for Optimal Quantum Controls in Quantum Metrology [J]. Physical Review Letters, 2022. 128(16): 160505.[29]Yang, Y., et al., Multiparameter simultaneous optimal estimation with an SU(2) coding unitary evolution [J]. Physical Review A, 2022. 105(2): 022406.[30]Liu, J., X.-X. Jing, and X. Wang, Quantum metrology with unitary parametrization processes [J]. Scientific Reports, 2015. 5(1): 8565.[31]Matsumoto, K., A new approach to the Cramér-Rao-type bound of the pure-state model [J]. Journal of Physics A: Mathematical and General, 2002. 35(13): 3111.[32]Yang, J., et al., Optimal measurements for quantum multiparameter estimation with general states [J]. Physical Review A, 2019. 100(3): 032104.[33]Hou, Z., et al., Minimal Tradeoff and Ultimate Precision Limit of Multiparameter Quantum Magnetometry under the Parallel Scheme [J]. Physical Review Letters, 2020. 125(2): 020501.[34]Jiajian Zhang, L.W., Yong-Ju Hai, Jiawei Zhang, Ji Chu, Ji Jiang, Wenhui Huang, Yongqi Liang, Jiawei Qiu, Xuandong Sun, Ziyu Tao, Libo Zhang, Yuxuan Zhou, Yuanzhen Chen, Weijie Guo, Xiayu Linpeng, Song Liu, Wenhui Ren, Jingjing Niu, Youpeng Zhong, Haidong Yuan, Dapeng Yu, Distributed multi-parameter quantum metrology with a superconducting quantum network [J]. Arxiv, 2024.[35]Liu, J.and H. Yuan, Quantum parameter estimation with optimal control [J]. Physical Review A, 2017. 96(1): 012117.[36]Pang, S.and A.N. Jordan, Optimal adaptive control for quantum metrology with time-dependent Hamiltonians [J]. Nature Communications, 2017. 8(1): 14695.[37]Alicja Dutkiewicz, T.E.O.B., and Thomas Schuster, The advantage of quantum control in many-body Hamiltonian learning [J]. Quantum, 2024. 8: 1537.[38]Yin, P., et al., Experimental super-Heisenberg quantum metrology with indefinite gate order [J]. Nature Physics, 2023. 19(8): 1122-1127.[39]Valeri, M., et al., Experimental multiparameter quantum metrology in adaptive regime [J]. Physical Review Research, 2023. 5(1): 013138.[40]Zhou, S., S. Michalakis, and T. Gefen, Optimal Protocols for Quantum Metrology with Noisy Measurements [J]. PRX Quantum, 2023. 4(4): 040305.[41]Ding, D.-S., et al., Enhanced metrology at the critical point of a many-body Rydberg atomic system [J]. Nature Physics, 2022. 18(12): 1447-1452.[42]Deng, X., et al., Quantum-enhanced metrology with large Fock states [J]. Nature Physics, 2024. 20(12): 1874-1880.[43]Proctor, T.J., P.A. Knott, and J.A. Dunningham, Multiparameter Estimation in Networked Quantum Sensors [J]. Physical Review Letters, 2018. 120(8): 080501.[44]Tsang, M., R. Nair, and X.-M. Lu, Quantum Theory of Superresolution for Two Incoherent Optical Point Sources [J]. Physical Review X, 2016. 6(3): 031033.[45]Macieszczak, K., et al., Dynamical phase transitions as a resource for quantum enhanced metrology [J]. Physical Review A, 2016. 93(2): 022103.[46]Garbe, L., et al., Critical Quantum Metrology with a Finite-Component Quantum Phase Transition [J]. Physical Review Letters, 2020. 124(12): 120504.[47]Chu, Y., et al., Dynamic Framework for Criticality-Enhanced Quantum Sensing [J]. Physical Review Letters, 2021. 126(1): 010502.[48]Hodaei, H., et al., Enhanced sensitivity at higher-order exceptional points [J]. Nature, 2017. 548(7666): 187-191.[49]Budich, J.C. and E.J. Bergholtz, Non-Hermitian Topological Sensors [J]. Physical Review Letters, 2020. 125(18): 180403.[50]Hotter, C., H. Ritsch, and K. Gietka, Combining Critical and Quantum Metrology [J]. Physical Review Letters, 2024. 132(6): 060801.[51]Di Candia, R., et al., Critical parametric quantum sensing [J]. npj Quantum Information, 2023. 9(1): 23.[52]Parto, M., et al., Enhanced sensitivity via non-Hermitian topology [J]. Light: Science & Applications, 2025. 14(1): 6.[53]Yang, Y., H. Yuan, and F. Li, Quantum multiparameter estimation enhanced by a topological phase transition [J]. Physical Review A, 2024. 109(2): 022604. |