Chinese Journal of Quantum Electronics ›› 2025, Vol. 42 ›› Issue (4): 450-463.doi: 10.3969/j.issn.1007-5461.2025.04.002
Previous Articles Next Articles
NIU Sujian 1,2,3 , XIE Mengyu 1,2 , ZHOU Zhiyuan 1,2*, SHI Baosen 1,2*
Received:2024-12-27
Revised:2025-02-20
Published:2025-07-28
Online:2025-07-28
CLC Number:
NIU Sujian , , XIE Mengyu , , ZHOU Zhiyuan , SHI Baosen , . Progress on ellipsometry utilizing quantum entangled light sources[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 450-463.
| [1]. Drude P. Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle [J]. Annalen der Physik, 1887, 268(12): 584-625. [2]. Hauge P S, Dill F H. Design and operation of ETA, an automated ellipsometer [J]. IBM Journal of Research and Development, 1973, 17(6): 472-489. [3]. Fujiwara H. Spectroscopic ellipsometry: principles and applications [M]. John Wiley & Sons, 2007. [4]. Gil J J, Ossikovski R. Polarized light and the Mueller matrix approach [M]. CRC press, 2022. [5]. Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit [J]. Science, 2004, 306(5700): 1330-1336. [6]. Nagata T, Okamoto R, O'brien J L, et al. Beating the standard quantum limit with four-entangled photons [J]. Science, 2007, 316(5825): 726-729. [7]. Pezzé L, Smerzi A. Entanglement, nonlinear dynamics, and the Heisenberg limit [J]. Physical review letters, 2009, 102(10): 100401. [8]. Kuzmich A, Mandel L. Sub-shot-noise interferometric measurements with two-photon states [J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1998, 10(3): 493. [9]. Sun F W, Liu B H, Gong Y X, et al. Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement [J]. Europhysics Letters, 2008, 82(2): 24001. [10]. Mitchell M W, Lundeen J S, Steinberg A M. Super-resolving phase measurements with a multiphoton entangled state [J]. Nature, 2004, 429(6988): 161-164. [11]. Xiang G Y, Higgins B L, Berry D W, et al. Entanglement-enhanced measurement of a completely unknown optical phase [J]. Nature Photonics, 2011, 5(1): 43-47. [12]. Zhou X Q, Cable H, Whittaker R, et al. Quantum-enhanced tomography of unitary processes [J]. Optica, 2015, 2(6): 510-516. [13]. Pedram A, Besaga V R, Gassab L, et al. Quantum estimation of the Stokes vector rotation for a general polarimetric transformation [J]. New Journal of Physics, 2024, 26(9): 093033. [14]. Rudnicki ?, Sánchez-Soto L L, Leuchs G, et al. Fundamental quantum limits in ellipsometry [J]. Optics Letters, 2020, 45(16): 4607-4610. [15]. Feng S, Pfister O. Sub-shot-noise heterodyne polarimetry [J]. Optics letters, 2004, 29(23): 2800-2802. [16]. Huang Z, Macchiavello C, Maccone L. Usefulness of entanglement-assisted quantum metrology [J]. Physical Review A, 2016, 94(1): 012101. [17]. Demkowicz-Dobrzański R, Maccone L. Using entanglement against noise in quantum metrology [J]. Physical review letters, 2014, 113(25): 250801. [18]. Jones R C. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices [J]. Journal of the Optical Society of America, 1948, 38(8): 671-685. [19]. Stokes G G. On the composition and resolution of streams of polarized light from different sources [J]. Transactions of the Cambridge Philosophical Society, 1851, 9: 399. [20]. Wolf E. Optics in terms of observable quantities [J]. Il Nuovo Cimento (1943-1954), 1954, 12: 884-888. [21]. Jones R C. New calculus for the treatment of optical systems. VIII. Electromagnetic theory [J]. Journal of the Optical Society of America, 1956, 46(2): 126-131. [22]. Goldberg A Z. Quantum theory of polarimetry: From quantum operations to Mueller matrices [J]. Physical Review Research, 2020, 2(2): 023038. [23]. Yang Kun, Wang Xiang Zhao, Bu Yang. Research progress of ellipsometer [J]. Laser & Optoelectronics Progress, 2007, 44(3): 43-49. 杨坤, 王向朝, 步扬. 椭偏仪的研究进展 [J]. 激光与光电子学进展, 2007, 44(3): 43-49. [24]. Zhu Xu Dan, Zhang Rong Jun, Zheng Yu Xiang, et al. Spectroscopic ellipsometry and its applications in the study of thin film materials [J]. Chinese Optics, 2019, 12(6): 1195-1234. 朱绪丹, 张荣君, 郑玉祥, 等. 椭圆偏振光谱测量技术及其在薄膜材料研究中的应用 [J]. 中国光学, 2019, 12(6): 1195-1234. [25]. Dong J, Zhou H. Polarimeters from bulky optics to integrated optics: A review [J]. Optics Communications, 2020, 465: 125598. [26]. Berry H G, Gabrielse G, Livingston A E. Measurement of the Stokes parameters of light [J]. Applied optics, 1977, 16(12): 3200-3205. [27]. Meng X, Li J, Song H, et al. Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator [J]. Applied Optics, 2014, 53(24): 5275-5282. [28]. De Martino A, Kim Y K, Garcia-Caurel E, et al. Optimized Mueller polarimeter with liquid crystals [J]. Optics letters, 2003, 28(8): 616-618. [29]. Alali S, Yang T, Vitkin I A. Rapid time-gated polarimetric Stokes imaging using photoelastic modulators [J]. Optics letters, 2013, 38(16): 2997-3000. [30]. Azzam R M A. Arrangement of four photodetectors for measuring the state of polarization of light [J]. Optics letters, 1985, 10(7): 309-311. [31]. Compain E, Drevillon B. Broadband division-of-amplitude polarimeter based on uncoated prisms [J]. Applied optics, 1998, 37(25): 5938-5944. [32]. Gruev V, Ortu A, Lazarus N, et al. Fabrication of a dual-tier thin film micropolarization array [J]. Optics express, 2007, 15(8): 4994-5007. [33]. Morel O, Seulin R, Fofi D. Handy method to calibrate division-of-amplitude polarimeters for the first three Stokes parameters [J]. Optics express, 2016, 24(12): 13634-13646. [34] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters [J]. Optica, 2015, 2(8): 716-723. [35] Balthasar Mueller J P, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter [J]. Optica, 2016, 3(1): 42-47. [36] Zhang X, Yang S, Yue W, et al. Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram [J]. Optica, 2019, 6(9): 1190-1198. [37]. Rothen A. The ellipsometer, an apparatus to measure thicknesses of thin surface films [J]. Review of Scientific Instruments, 1945, 16(2): 26-30. [38]. Jasperson S N, Schnatterly S E. An improved method for high reflectivity ellipsometry based on a new polarization modulation technique [J]. Review of Scientific Instruments, 1969, 40(6): 761-767. [39]. Adachi S. Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information [M]. Springer Science & Business Media, 2013. [40]. Abouraddy A F, Toussaint K C, Sergienko A V, et al. Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion [J]. Optics Letters, 2001, 26(21): 1717-1719. [41]. Abouraddy A F, Toussaint K C, Sergienko A V, et al. Entangled-photon ellipsometry [J]. Journal of the Optical Society of America B, 2002, 19(4): 656-662. [42]. Aiello A, Puentes G, Woerdman J P. Linear optics and quantum maps [J]. Physical Review A, 2007, 76(3): 032323. [43] Anderson D G M, Barakat R. Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix [J]. JOSA A, 1994, 11(8): 2305-2319. [44]. Banaszek K, D’ariano G M, Paris M G A, et al. Maximum-likelihood estimation of the density matrix [J]. Physical Review A, 1999, 61(1): 010304. [45]. Abouraddy A F, Sergienko A V, Saleh B E A, et al. Quantum entanglement and the two-photon Stokes parameters [J]. Optics Communications, 2002, 201(1-3): 93-98. [46]. He C, He H, Chang J, et al. Polarisation optics for biomedical and clinical applications: a review [J]. Light: Science & Applications, 2021, 10(1): 194. [47] Besaga V R, Lopushenko I V, Sieryi O, et al. Bridging classical and quantum approaches in optical polarimetry: Predicting polarization-entangled photon behavior in scattering environments [J]. arxiv preprint arxiv:2411.06134, 2024. [48]. Magnitskiy S, Agapov D, Chirkin A. Quantum ghost polarimetry with entangled photons [J]. Optics Letters, 2022, 47(4): 754-757. [49]. Pedram A, Besaga V R, Gassab L, et al. Quantum estimation of the Stokes vector rotation for a general polarimetric transformation [J]. New Journal of Physics, 2024, 26(9): 093033. [50]. Toussaint Jr K C, Di Giuseppe G, Bycenski K J, et al. Quantum ellipsometry using correlated-photon beams [J]. Physical Review A, 2004, 70(2): 023801. [51]. Graham D J L, Parkins A S, Watkins L R. Ellipsometry with polarisation-entangled photons [J]. Optics Express, 2006, 14(16): 7037-7045. [52]. Zou Xue Feng, Li Feng Jiao, Cui Liang, et al. Fiber based Scheme for Quantum Ellipsometry [J]. Acta Sinica Quantum Optica, 2019 (1): 15-21. 邹雪峰, 李凤娇, 崔亮, 等. 基于光纤的量子椭圆偏振光测量装置 [J]. 量子光学学报, 2019 (1): 15-21. [53]. Pedram A, Besaga V R, Setzpfandt F, et al. Nonlocality enhanced precision in quantum polarimetry via entangled photons [J]. Advanced Quantum Technologies, 2024: 2400059. [54]. You C J, Rodriguez-Fajardo V, Francis L, et al. Nonlocal Mueller polarimetry[C]//Polarized Light and Optical Angular Momentum for Biomedical Diagnostics 2024. SPIE, 2024, 12845: 42-48. [55]. Lung S, Wang K, Pedersen N R H, et al. Robust Classical and Quantum Polarimetry with a Single Nanostructured Metagrating [J]. ACS photonics, 2024, 11(3): 1060-1067. [56]. Tischler N, Krenn M, Fickler R, et al. Quantum optical rotatory dispersion [J]. Science advances, 2016, 2(10): e1601306. [57]. Yoon S J, Lee J S, Rockstuhl C, et al. Experimental quantum polarimetry using heralded single photons [J]. Metrologia, 2020, 57(4): 045008. [58]. Restuccia S, Gibson G M, Cronin L, et al. Measuring optical activity with unpolarized light: Ghost polarimetry [J]. Physical Review A, 2022, 106(6): 062601. [59] Xie M Y, Niu S J, Li Y H, et al. Quantum entanglement enabled ellipsometer for phase retardance measurement [J]. arxiv preprint arxiv:2402.17401, 2024. [60]. Saxena A, Kaur M, Devrari V, et al. Quantum ghost imaging of a transparent polarisation sensitive phase pattern [J]. Scientific Reports, 2022, 12(1): 21105. [61]. Zhang Y, He Z, Tong X, et al. Quantum imaging of biological organisms through spatial and polarization entanglement [J]. Science Advances, 2024, 10(10): eadk1495. [62]. Li Wei Qi. Research on development and application of a high-precision broadband Mueller matrix ellipsometer [D]. Wuhan: Huazhong University of Science and Technology, 2016. 李伟奇. 高精度宽光谱穆勒矩阵椭偏仪研制与应用研究[D]. 武汉:华中科技大学, 2016. [63]. Zhang Song. Research on development and application of the Photoelastic-modulated high-speed Mueller matrix ellipsometer [D]. Wuhan: Huazhong University of Science and Technology, 2021. 张松. 光弹调制高速穆勒矩阵椭偏仪研制与应用研究 [D]. 武汉:华中科技大学,2021. [64]. Chang Jin Tao. A study on design of polarimetric measurement system for biomedical applications [D]. Beijing: Tsinghua University, 2016. 常金涛. 生物体系偏振测量系统的设计 [D]. 北京:清华大学, 2016. [65]. Janassek P, Blumenstein S, Els??er W. Recovering a hidden polarization by ghost polarimetry [J]. Optics Letters, 2018, 43(4): 883-886. [66]. Hannonen A, Hoenders B J, Els?sser W, et al. Ghost polarimetry using Stokes correlations [J]. Journal of the Optical Society of America A, 2020, 37(5): 714-719. [67]. Magnitskiy S, Agapov D, Chirkin A. Ghost polarimetry with unpolarized pseudo-thermal light [J]. Optics letters, 2020, 45(13): 3641-3644. |
| [1] | LU Xiaotong , , CHANG Hong , . Quantum precision measurement based on optical lattice atomic clocks [J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 437-449. |
| [2] | YANG Yu, , ZHANG Pei , , LI Fuli , . Quantum multiparameter estimation enhanced by feedback control [J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 464-475. |
| [3] | LU Maolin , , BAI Miaoqing, QIN Chengbing , . Noise‐resistant frequency‐domain imaging based on single‐photon detector arrays [J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 537-545. |
| [4] | YUAN Hao , , LUO Bing , CHEN Jianjun , , CHEN Zhen, , YANG Wenguang , , ZHANG Hao , ZHANG Linjie , , ZHANG Haofeng. Corona discharge signal measurement based on Rydberg atoms [J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 556-564. |
| [5] | DU Yijie , LYU Ziyao , HU Weidong , HE Jun , LIU Zhihui , DONG Tao, JIN Shichao. Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications [J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 701-712. |
| [6] | SHI Xiping, LIU Weiyue. Research on Doppler compensation in linear optical sampling algorithm [J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 729-737. |
| [7] | LIU Xueming , CHEN Yongcong , AO Ping. Quantum control optimization in thermal noise environment [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 103-112. |
| [8] | YANG Han , FENG Yan , XIE Sijiang , . Quantum auction protocol based on semi⁃quantum secure direct communication [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 125-134. |
| [9] | YANG Donghan , LI Zhiqiang , WU Xi , PAN Wenjie , YANG Hui. Optimization of Oracle circuits based on minimum weight and template matching [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 151-160. |
| [10] | NIU Yiren , GUAN Zhijin , LI Haifeng , LU Junyu. A conversion method for improving fidelity of quantum circuits [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 161-169. |
| [11] | WANG Shengbin , DOU Menghan , WU Yuchun , GUO Guoping , GUO Guangcan . Research progress of distributed quantum computing [J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 1-25. |
| [12] | WANG Shuo , PAN Jiazheng , WEI Xingyu , JIANG Junliang , ZHANG Kaixuan , LI Zishuo , GUO Tingting , XU Wenqu , ZUO Quan , ZHOU Tianshi , SHENG Yifan , SUN Guozhu , WU Peiheng , . FPGA⁃based linear detection and characterization of microwave coherent source [J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 850-857. |
| [13] | HU Qianqian , FENG Bao , YAN Longchuan , ZHAO Xiaohong , CHEN Zhiyu , LI Wenting , LI Wei . HU Qianqian 1,2, FENG Bao 1,2, YAN Longchuan 3, ZHAO Xiaohong 4, CHEN Zhiyu 3, LI Wenting 5, LI Wei 5* [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 712-718. |
| [14] | ZHANG Bo , QU Diqing , LUO Jun , DU Xiangjian , FANG Yuqiang , JIANG Lianjun , GAO Song , YU Lin , SUN Fang , TANG Shibiao . A defense scheme of pulse illumination attack for quantum key distribution systems [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 719-725. |
| [15] | HUANG Guan , LOU Xiaoping. Semi⁃quantum private comparison protocol based on four⁃particle GHZ state [J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 726-737. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||