Chinese Journal of Quantum Electronics ›› 2026, Vol. 43 ›› Issue (1): 21-37.doi: 10.3969/j.issn.1007-5461.2026.01.002
• Review • Previous Articles Next Articles
ZHANG Chuancheng 1,2 , ZHANG Mengyu2 , ZHANG Qingli 1*, DING Shoujun 1,2*,XIONG Zhengdong3 , LIU Wenpeng1 , DOU Renqin 1 , JIANG Haihe
Received:2024-11-13
Revised:2025-04-08
Published:2026-01-28
Online:2026-01-28
Supported by:CLC Number:
ZHANG Chuancheng , , ZHANG Mengyu , ZHANG Qingli , DING Shoujun , XIONG Zhengdong , LIU Wenpeng , DOU Renqin , JIANG Haihe . Research progress on laser ablation characteristics for dental hard tissues[J]. Chinese Journal of Quantum Electronics, 2026, 43(1): 21-37.
| [1]Maiman T H.Stimulated Optical Radiation in Ruby [J]. Nature, 1960, 187: 493-494.[J].Nature, 1960, 187:493-494 [2] Jia F.Research on the medicallaser industry development technical way chart [J]. Applied laser, 2011, 31: 351-354. [3]贾锋.激光医疗产业发展的技术路线图研究 [J]. 应用激光, 2011, 31: 351-354. [4] Ma X N.Application status and development trend of light processing technology [J]. Electronic Technology, 2019, 104-105. [5]马西宁.激光加工技术的应用现状及发展趋势 [J]. 电子技术与软件工程, 2019, 104-105. [6] LeCarpentier G L, Motamedi M, McMath L P, et al.Continuous wave laser ablation of tissue: analysis of thermal and mechanical events [J]. IEEE Transactions on biomedical engineering, 1993, 40: 188-200. [7] Nammour S.Laser dentistry, current advantages, and limits [J]. Photomedicine and laser surgery, 2012, 30: 1-4. [8] Inchingolo A M, Malcangi G, Ferrara I, et al.Laser surgical approach of upper labial frenulum: a systematic review [J]. International Journal of Environmental Research and Public Health, 2023, 20: 1302. [9] Stern R, H, Sognnaes R, F.Laser beam effect on dental hard tissues. [J]. Journal of Dental Research, 1964, 43: 873. [10] Goldman L, Gray J A, Goldman J, et al.Effect of laser beam impacts on teeth [J]. The Journal of the American Dental Association, 1965, 70: 601-606. [11] Gordon T E.Single-surface cutting of normal tooth with ruby laser [J]. The Journal of the American Dental Association, 1967, 74: 398-402. [12] Apel C, Meister J, Ioana R, et al.The ablation threshold of Er: YAG and Er: YSGG laser radiation in dental enamel [J]. Lasers in medical science, 2002, 17: 246-252. [13] Clauser C, Clayman L.Effects of exposure time and pulse parameters on CO2 laser osteotomies [J]. Lasers in surgery and medicine, 1989, 9: 22-29. [14] Ivanenko M, Hering P.Wet bone ablation with mechanically Q-switched high-repetition-rate CO2 laser [J]. Applied Physics B, 1998, 67: 395-397. [15] Han J S X, Liu Y, Deng Z J, et al.Optimizing noise characteristics of mode-locked Yb-doped fiber laser using gain-induced RIN-transfer dynamics [J]. High Power Laser Science and Engineering, 2021, 9: e36. [16] Yang Q, Ji L F, Xu B, et al.Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3 glass [J]. Opto-Electronic Engineering, 2017, 44: 1200-1209. [17]杨强, 季凌飞, 徐博, 等.皮秒激光微制造As2Se3玻璃红外增透性表面 [J]. 光电工程, 2017, 44: 1200-1209. [18] Panduric D G, Juric I B, Music S, et al.Morphological and ultrastructural comparative analysis of bone tissue after Er: YAG laser and surgical drill osteotomy [J]. Photomedicine and laser surgery, 2014, 32: 401-408. [19] Zhang X Z.Hard Biotissue Ablation with Pulse Lasers and Its Novel Medical Technology [J]. 2010. [20]张先增 脉冲激光诱导生物硬组织消融及其医疗新技术 [D].2010. [21] Bernard M, Grothues-Spork M, Hertel P, et al.Reactions of meniscal tissue after arthroscopic laser application: an in vivo study using five different laser systems [J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1996, 12: 441-451. [22] Curzon M, Featherstone J.Chemical composition of enamel [J]. Handbook of experimental aspects of oral biochemistry, 1983, 123-135. [23] Ivanov B, Hakimian A, Peavy G, et al.Mid-infrared laser ablation of a hard biocomposite material: mechanistic studies of pulse duration and interface effects [J]. Applied Surface Science, 2003, 208: 77-84. [24] Izatt J A, Albagli D, Britton M, et al.Wavelength dependence of pulsed laser ablation of calcified tissue [J]. Lasers in surgery and medicine, 1991, 11: 238-249. [25] Jean B, Bende T, Mid-IR Laser Applications in Medicine [M].Solid-State Mid-Infrared Laser Sources, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, 511-544. [26] Vogel A, Venugopalan V.Mechanisms of pulsed laser ablation of biological tissues [J]. Chemical reviews, 2003, 103: 577-644. [27] Fried D, Featherstone J D, Visuri S R, et al.Caries inhibition potential of Er:YAG and Er:YSGG laser radiation [C]. Lasers in Dentistry II, SPIE, 1996, 73-78. [28] Featherstone J D B.Laser effects on dental hard tissues [J]. Advances in Dental Research, 1987, 1: 21-26. [29] Ogita M, Tsuchida S, Aoki A, et al.Increased cell proliferation and differential protein expression induced by low-level Er: YAG laser irradiation in human gingival fibroblasts: proteomic analysis [J]. Lasers in medical science, 2015, 30: 1855-1866. [30] Kong S, Aoki A, Iwasaki K, et al.Biological effects of Er: YAG laser irradiation on the proliferation of primary human gingival fibroblasts [J]. Journal of biophotonics, 2018, 11: e201700157. [31] Pourzarandian A, Watanabe H, Ruwanpura S M, et al.Effect of low‐level Er: YAG laser irradiation on cultured human gingival fibroblasts [J]. Journal of periodontology, 2005, 76: 187-193. [32] Aoki A, Mizutani K, Taniguchi Y, et al.Current status of Er: YAG laser in periodontal surgery [J]. Japanese Dental Science Review, 2024, 60: 1-14. [33] Ohsugi Y, Niimi H, Shimohira T, et al.In vitro cytological responses against laser photobiomodulation for periodontal regeneration [J]. International Journal of Molecular Sciences, 2020, 21: 9002. [34] Zuerlein M J, Fried D, Featherstone J D, et al.Optical properties of dental enamel in the mid-IR determined by pulsed photothermal radiometry [J]. IEEE Journal of selected topics in quantum electronics, 1999, 5: 1083-1089. [35] Zuerlein M J, Fried D, Featherstone J D.Modeling the modification depth of carbon dioxide laser‐treated dental enamel [J]. Lasers in Surgery and Medicine, 1999, 25: 335-347. [36] Fried D, Ragadio J, Akrivou M, et al.Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at λ= 9.6 and 10.6 μm [J]. Journal of Biomedical Optics, 2001, 6: 231-238. [37] Fried D, Glena R E, Featherstone J D, et al.Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths [J]. Applied optics, 1995, 34: 1278-1285. [38] Gregory B A Human tooth in low and high intensive light fields [C].Proc.SPIE, 1996, 68-87. [39] Hibst R, Keller U.Experimental studies of the application of the Er: YAG laser on dental hard substances: I. Measurement of the ablation rate [J]. Lasers in surgery and medicine, 1989, 9: 338-344. [40] Belikov A V, Erofeev A V, Shumilin V V, et al.Comparative study of the 3μm laser action on different hard tooth tissue samples using free running pulsed Er-doped YAG, YSGG, YAP and YLF lasers [C]. Dental Applications of Lasers, SPIE, 1993, 60-67. [41] Diaci J, Gaspirc B.Comparison of Er: YAG and Er, Cr: YSGG lasers used in dentistry [J]. J laser health Acad, 2012, 1: 1-13. [42] Perhavec T, Diaci J.Comparison of heat deposition of Er: YAG and Er, Cr: YSGG lasers in hard dental tissues [J]. J Laser Health Acad, 2009, 2: 1-6. [43] Krapchev V B, Rabii C D, Harrington J A Novel CO2 laser system for hard tissue ablation [C].Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, SPIE, 1994, 341-348. [44] Staninec M, Darling C L, Goodis H E, et al.Pulpal effects of enamel ablation with a microsecond pulsed λ= 9.3‐μm CO2 laser [J]. Lasers in Surgery and Medicine, 2009, 41: 256-263. [45] Konishi N, Fried D, Featherstone J, et al.Inhibition of secondary caries by CO2 laser treatment [J]. Amer. J. Dent, 1999, 12: 213-216. [46] Suter V G, Altermatt H J, Bornstein M M.A randomized controlled clinical and histopathological trial comparing excisional biopsies of oral fibrous hyperplasias using CO2 and Er: YAG laser [J]. Lasers in medical science, 2017, 32: 573-581. [47] Riggs K, Keller M, Humphreys T R.Ablative laser resurfacing: high-energy pulsed carbon dioxide and erbium: yttrium-aluminum-garnet [J]. Clinics in dermatology, 2007, 25: 462-473. [48] Tanzi E L, Alster T S.Single-Pass Carbon Dioxide Versus Multiple-Pass Er: YAG Laser Skin Resurfacing: A Comparison of Postoperative Wound Healing and Side-Effect Rates [J]. Dermatologic Surgery, 2003, 29: 80-84. [49] Cui Q Z.Study on 2.79 μm high-repetition-rate acousto-optic Q-switched Er:YSGG laser and its ablation performance for hard dentaltissues [D]. 2020. [50]崔庆哲 2.79微米高重频声光调QEr:YSGG激光器及牙硬组织消融研究 [D]. 2020. [51] Igarashi A, Kato J, Takase Y, et al.Influence of output energy and pulse repetition rate of the Er: YAG laser on dentin ablation [J]. Photomedicine and laser surgery, 2008, 26: 189-195. [52] Melcer J, Farcy J, Hellas G, et al.Preparation of Cavities using a TEA CO2 laser [C]. Proc. 3rd International Congress on Lasers in Dentistry, 1992, 227-228. [53] Baraba A, Perhavec T, Chieffi N, et al.Ablative potential of four different pulses of Er: YAG lasers and low-speed hand piece [J]. Photomedicine and laser surgery, 2012, 30: 301-307. [54] Luka? M, Marincek M, Grad L.Super VSP Er: YAG Pulses for Fast and Precise Cavity Preparation [J]. Journal of Oral Laser Applications, 2004, 4. [55] Camerlingo C, Lepore M, Gaeta G M, et al.Er: YAG laser treatments on dentine surface: micro-Raman spectroscopy and SEM analysis [J]. Journal of dentistry, 2004, 32: 399-405. [56] Comte A.Scanning electron microscopy study of the effect of steel and tungsten carbide burs on dental tissues [J]. Journal de Biologie Buccale, 1983, 11: 3-14. [57] Forrer M, Frenz M, Romano V, et al.Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength [J]. Applied Physics B, 1993, 56: 104-112. [58] McCormack S, Fried D, Featherstone J, et al.Scanning electron microscope observations of CO2 laser effects on dental enamel [J]. Journal of dental research, 1995, 74: 1702-1708. [59] Góra W S, McDonald A, Hand D P, et al.Microsecond enamel ablation with 10.6 μm CO2 laser radiation [C]. Lasers in Dentistry XXII, SPIE, 2016, 16-21. [60] Kondo S, Hazama H, Tanaka K, et al.In vitro study on nanosecond-pulsed Q-switched Er: YAG laser-induced selective removal for caries dentin [J]. Lasers in Dental Science, 2020, 4: 195-202. [61] Robles-Linares J A, Winter K, Liao Z.The effect of laser ablation pulse width and feed speed on necrosis and surface damage of cortical bone [J]. Chinese Journal of Mechanical Engineering, 2022, 35: 52. [62] Corona S A M, Souza‐Gabriel A E, Chinelatti M A, et al.Influence of energy and pulse repetition rate of Er: YAG laser on enamel ablation ability and morphological analysis of the laser‐irradiated surface [J]. Journal of Biomedical Materials Research Part A, 2008, 84: 569-575. [63] Sakakibara Y, Ishimaru K, Asano S, et al.Morphological change of tooth surface irradiated by Er: YAG laser [C]. Advanced Laser Dentistry, SPIE, 1995, 168-189. [64] Lizarelli R D Z, Moriyama L T, Jorge J, et al.Comparative ablation rate from a Er: YAG laser on enamel and dentin of primary and permanent teeth [J]. Laser physics, 2006, 16: 849-858. [65] Lizarelli R D Z, Kurachi C, Misoguti L, et al.Characterization of enamel and dentin response to Nd: YAG picosecond laser ablation [J]. Journal of Clinical Laser Medicine & Surgery, 1999, 17: 127-131. [66] Nahas P, Houeis S, Chamboredon R, et al.Assessment of the Periodontal Cementum Ablation Depth during Root Planing by an Er: YAG Laser at Different Energy Densities: An Ex Vivo Study [J]. Dentistry Journal, 2023, 11: 116. |
| [1] | SHENG Mingzhen , , Bai Tongzheng , ZHENG Xiaobing , ZHAI Wenchao , XIA Maopeng . Research on target trajectory extraction algorithm for single‑photon lidar based on improved RANSAC [J]. Chinese Journal of Quantum Electronics, 2025, 42(6): 759-769. |
| [2] | LI Yang , , LU Sibin , , JIANG Min , , SUN Chuan , , CHEN Xiaoli , , FU Jiahao , , LI Runbing , WANG Jin , , ZHAN Mingsheng , . Experimental study on rapid switching of phase‑locked and frequency‑locked broadband lasers [J]. Chinese Journal of Quantum Electronics, 2025, 42(6): 779-787. |
| [3] | TANG Shihao, LIU Jiayi, HUANG Song, GAO Weiqing . Wavelength⁃tunable mid⁃infrared Er:ZBLAN fiber laser [J]. Chinese Journal of Quantum Electronics, 2025, 42(6): 788-794. |
| [4] | ZHANG Lujin , , WU Decheng , CAI Xinyuan , , HUANG Honghua , . Numerical simulation and experimental analysis of temperature field of aerosol⁃water vapor lidar [J]. Chinese Journal of Quantum Electronics, 2025, 42(6): 857-866. |
| [5] | LIU Yao, , DOU Renqin, , HUANG Lei , , LUO Jianqiao, , JIANG Haihe , ZHANG Qingli , , ZHANG Junrui , , SUN Guihua, , WANG Xiaofei , , LIU Wenpeng, . Thermal effects and laser properties of end⁃pumped gradient⁃doped Nd:YAG crystal [J]. Chinese Journal of Quantum Electronics, 2025, 42(6): 867-876. |
| [6] | LUO Qiaoxia, ZHAO Zhongbin, HU Tianhao, ZHOU Yong, ZHENG Ziqi, GAO Weiqing . High signal-to-noise ratio microwave signal generation based on SBS assisted optical heterodyne technology [J]. Chinese Journal of Quantum Electronics, 2025, 42(5): 677-685. |
| [7] | QIN Zongfeng , GAO Yuqi , ZHOU Hui , SHI Yan. Research on threshold optimization for pulse single‑mode echo ranging of spaceborne lidar [J]. Chinese Journal of Quantum Electronics, 2025, 42(5): 711-721. |
| [8] | ZHU Jun , ZHANG Mingwei , , SHI Penglei , , HOU Cong , , LI Xiang , , YU Benli , . Demodulation of laser Doppler vibration signal based on carrier spectrum analysis [J]. Chinese Journal of Quantum Electronics, 2025, 42(3): 345-353. |
| [9] | LI Ting , , ZHU Liquan , , CHEN Yuantong , , XU Lixin , , GU Chun , . Influence of color temperature on color gamut volume, gamut coverage, and light efficiency in four⁃primary laser display systems (Cover Paper) [J]. Chinese Journal of Quantum Electronics, 2025, 42(3): 391-404. |
| [10] | HAO Yanmei , , HUANG Yao , , ZHANG Baolin , , CHEN Qunfeng , GUAN Hua , GAO Kelin , . Optimized design and error analysis of vibration sensitivity of horizontally placed cylindrical reference cavity [J]. Chinese Journal of Quantum Electronics, 2025, 42(2): 177-186. |
| [11] | LIN Yuqing , , XIA Hua , ZHANG Zhirong , SUN Pengshuai , WU Bian , LI Zhe , CAI Yongjun . Investigation of high‑precision real time wavelength monitoring method based on Fabry‑Perot etalon [J]. Chinese Journal of Quantum Electronics, 2025, 42(2): 187-195. |
| [12] | XU Jie, WANG Zhangjun, CHEN Chao, ZHUANG Quanfeng, WU Jiasheng, GUO Tiantian. Preliminary experimental study on lidar detection of chlorophyll-a and suspended matter concentration in seawater surface [J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 802-812. |
| [13] | WANG Ke , , WANG Zilin , ZHOU Xiaoyu , HUANG Weiqi , ZHANG Tiemin , PENG Hongyan , WANG Anchen , ZHANG Xi , HUANG Zhongmei , , LIU Shirong. Preparation of black silicon by nanosecond pulsed laser and its optical properties [J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 813-821. |
| [14] | ZUO Lingyun, SHI Haosen, YAO Yuan, JIANG Yanyi, MA Longsheng. Background noise analysis of laser interferometer for test of TDI technology on ground [J]. Chinese Journal of Quantum Electronics, 2024, 41(4): 649-658. |
| [15] | PU Lei , QIU Yan , LU Bowen , ZHU Bin , MEI Jinna , CAI Zhen , WU Jian , LI Xingwen , LI Yongdong , HANG Yuhua . Review of instrumentation development of laser⁃induced breakdown spectroscopy (Invited, Cover Paper) [J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 399-420. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||