[1] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing
[J]. Science, 2007, 317: 222-225.
[2] Yang Y, Wudl F. Organic Electronics: From Materials to Devices [J]. Adv. Mater., 2009, 21: 1401-1403.
[3] Kippelen B, Bredas J L. Organic photovoltaics [J]. Energy Environ. Sci., 2009, 2: 251-261.
[4] Huang J, Yu J S, Guan Z Q, Jiang Y D. Improvement in open circuit voltage of organic solar cells by inserting a thin phosphorescent iridium complex layer [J]. Appl. Phys. Lett., 2010, 97: 143301.
[5] Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48: 183-185.
[6] Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photon., 2009, 3: 649-653.
[7] Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C, Yu L P. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4 % [J]. Adv. Mater., 2010, 22: E135-E138.
[8] Heliatek and IAPP achieve production-relevant efficiency record for organic photovoltaic cells[OL]. http://www.heliatek.com/news-19.
[9] Sista S, Hong Z, Park M H, Xu Z, and Yang Y. High-Efficiency Polymer Tandem Solar Cells with Three-Terminal Structure [J]. Adv. Mater., 2009, 21: E1-E4.
[10] Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D. Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60 [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 263-266.
[11] Krebs F C, Gevorgyan S A, and Alstrup J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies[J]. J. Mater. Chem., 2009, 19: 5442-5451.
[12] Feng Z H, Hou Y B, Lei D S. The influence of electrode buffer layers on the performance of polymer photovoltaic devices [J]. Renew. Energ., 2010, 35: 1175-1178.
[13] Godoy A, Cattin L, Toumi L, Diaz F R, del Valle M A, Soto G M, Kouskoussa B, Morsli M, Benchouk K, Khelil A, Bernede J C. Effects of the buffer layer inserted between the transparent conductive oxide anode and the organic electron donor [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 648-654.
[14] Shrotriya V, Li G, Yao Y, Chu C W, and Yang Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells [J]. Appl. Phys. Lett., 2006, 88: 073508.
[15] Zhao D W, Liu P, Sun X W, Tan S T, Ke L, and Kyaw A K K. An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer [J]. Appl. Phys. Lett., 2009, 95: 153304.
[16] Kinoshita Y, Takenaka R, Murata H. Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer[J]. Appl. Phys. Lett., 2008, 92: 243309.
[17] Li N, Lassiter B E, Lunt R R, Wei G D, and Forrest S R. Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells[J]. Appl. Phys. Lett., 2009, 94: 023307.
[18] Yoo S, Domercq B, Kippelen B. Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60 [J]. J. Appl. Phys., 2005, 97: 103706.
[19] Servaites J D, Yeganeh S, Marks T J, and Ratner M A. Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance[J]. Adv. Funct. Mater. 2010, 20: 97-104.
[20] Wang N N, Yu J S, Lin H, Jiang Y D. Organic photovoltaic cells with improved performance using bathophenanthroline as a buffer layer[J]. Chin. J. Chem. Phys., 2010, 23: 84-88.
[21] Huang J, Yu J S, Lin H, Jiang Y D. Detailed analysis of bathocuproine layer for organic solar cells based on copper phthalocyanine and C60 [J]. J. Appl. Phys., 2009, 105: 073105. |