[1]李志斌.非线性数学物理方程的行波解[M].北京:科学出版社,2006. Li Zhibin. The travelling wave solutions of nonlinear mathematical and physical equations [M].Beijing: Science.,2006(in chinese).
[2]楼森岳,唐晓艳.非线性数学物理方法[M].北京:科学出版社,2006. Lou Senyue, Tang Xiaoyan. The method of nonlinear mathematical and physical [M]. Beijing:Science., 2006(in chinese).
[3]刘式适,刘式达.物理学中的非线性方程[M].北京:北京大学,2000. Liu Shishi, Liu Shida. Nonlinear equations of the physics[M].Beijing: Peking University., 2000(in chinese).
[4]郭玉翠.非线性偏微分方程引论[M].北京:清华大学出版社,2008. Guo YuCui.Nonlinear Partial Differential Equations[M]. Beijing: Tsinghua University press., 2008(in chinese).
[5]Wang Mingliang, Li Xiangzheng, Zhang Jingliang. The -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys. Lett., A 372 (2008) 417-423.
[6]Bekir A., Application of the -expansion method for nonlinear evolution equations[J]. Phys. Lett., A 372 (2008) 3400-3406.
[7]Zhang jiao,Wei Xiaoli,Lu Yongjie.A generalized -expansion method and its applications [J]. Phys.Lett.,A 372 (2008) 3653-3658.
[8]Zhang Sheng, Tong Jinglin, Wang Wei. A generalized -expansion method for the mKdV equation with variable coefficients[J]. Phys. Lett.,A 372 (2008) 2254-2257.
[9]Pang Jing, Bian Chun quan, Chao Lu,New Exact Travelling Wave Solutions of Nonlinear Evolution Equations[J].Journal of Inner Mongolia University.,2010,41(1):13-21.
[10]Zhou Yubin, Wang Ming liang,Wang Fan,Miao tian de.Auto-Backlund transformation and multi-soliton solutions to a coupled KdV equations with variable coefficients[J].Journal of Lanzhou University(Natural Sciences).,2004,40(3):03-10.
[11]Pang Jing, Bian Chun- quan, Chao Lu. A new auxiliary equation method of solving the KdV equation[J]. Applied Mathematics and Mechanics., 2010,31(7):927-936.
[12]Wazwaz AM. The tanh method for travelling wave solutions of nonlinear equations[J]. Appl Math Comput.,2004,154(3):713-723.
[13]Zhang Sheng. Application of Exp-function method to high-dimensional nonlinear evolution equation[J].Chaos Solitons Fractals.,2006,014-016.
[14]石玉仁,吕克璞,段文山,杨红娟.变系数Burgers方程的精确解[J].兰州大学学报(自然科学版).2005,41(4):107-111. Shi Yuren,Lü Kepu,Duan Wenshan et.al. Exact solution to Burgers equation with variable coefficient[J].Journal of Lanzhou University(Natural Sciences), 2005,41(4):107-111(in chinese).
[15]石玉仁,汪映海,杨红娟,吕克璞,,段文山.广义变系数Burgers方程的精确解.华东师范大学学报.2006,5:27-33. Shi Yuren,Wang Yinghai,Yang Hongjuan et.al. Exact solutions of generalized Burgers’s equation with variable coefficient[J].Journal of East China Normal University(Natural Sciences),2006,5:27-23 (in chinese).
[16]李二强,王明亮, 方法及组合KdV-Burgers方程的行波解[J].河南科技大学学报(自然科学版),2008,29(5):80-85. Li Erqiang,Wang Mingliang. -method and travelling wave solutions to compound KdV-Burgers Equation[J].Journal of Henan University of Science and Technology (Natural Science),2008,29 (5) :80-85(in chinese).
[17]张金良,李向正,王明亮,王跃明,方宗德.变系数Burgers 方程的一些新精确解[J],河南科技大学学报(自然科学版).2003,24(1):108-110. Zhang Jinliang,Li Xiangzheng,Wang Mingliang et.al. New exact solution to Burgers equation with variable coefficient[J]. Journal of Henan University of Science and Technology ( Natural Science), 2004,24(1): 108-110 (in chinese).
[18]徐丽萍,曹红妍.变系数Burgers 方程新的精确解[J].2006,27(2):186-188. Xu Liping,Cao Hongyan.Exact solution to Burgers equation with variable coefficient[J]. Journal of Qingdao University of Science and Technology.,2006,27(2):186-188(in chinese).
[19]Taogetusang,Sirendaoerji. Jacobi elliptic function exact solutions of sine-Gordon equation[J]. Chinese Journal of Quantum Electronics(量子电子学报),2009,26(3):278-287(in Chinese). [20]斯仁道尔吉.辅助方程法与非线性发展方程的孤立波解[J].内蒙古师范大学学报(自然科学汉文版),2003,35(2):127-131. Sirendaoerji.Auxiliary equation method and soution wave solutions to nonlinear evolution equations[J]. Journal of Inner Mongolia Normal University(Natural Science Edition),2003, 35 (2):127-131(in chinese).
[21]Taogetusang, Sirendaoerji. New solitary wave solutions of the combined KdV equation with the variable coefficients [J]. Chinese Journal of Quantum Electronics(量子电子学报),2009,26(2):148-154(in Chinese). |