[1] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science, 1999, 283(5410): 2050-2056.
[2] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 2000, 85(2):441-444.
[3] Wang X B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors[J]. Physical Review A, 2013, 87(1): 012320.
[4] Hu Kang, Mao Qianpin, Zhao Shengmei. Round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state[J]. Acta Optica Sinica(光学学报), 2017, 37(5): 339-345(in Chinese).
[5] Gao Zhongling, Zhao Shengmei, Ma Yuanyuan, et al. International business data transmission scheme based on MDI-QKD protocol[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2019, 36(1): 34-39(in Chinese).
[6] Mao Qianpin, Zhao Shengmei, Wang Le, et al. Measurement-device-independent quantum key distribution based on wavelength division multiplexing technology [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2017, 34(1): 46-53(in Chinese).
[7] Mao Q P, Wang L, Zhao S M. Plug-and-play round-robin differential phase-shift quantum key distribution[J]. Scientific Reports, 2017, 7(1): 15435.
[8] Wang X B, Peng C Z, Zhang J, et al. General theory of decoy-state quantum cryptography with source errors[J]. Physical Review A, 2008, 77(4): 042311.
[9] Ding Y Y, Chen H, Wang S, et al. Polarization variations in installed fibers and their influence on quantum key distribution systems[J]. Optics Express, 2017, 25(22): 27923-27936.
[10] Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance[J]. Optics Letters, 2018, 43(9): 2030-2033.
[11] Qian Y J, He D Y, Wang S, et al. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors[J]. Physical Review Applied, 2018, 10(6): 064062.
[12] Qian Y J, He D Y, Wang S, et al. Robust countermeasure against detector control attack in a practical quantum key distribution system[J]. Optica, 2019, 6(9): 1178-1184.
[13] Wang S, Yin Z Q, Chen W, et al. Experimental demonstration of a quantum key distribution without signal disturbance monitoring[J]. Nature Photonics, 2015, 9(12):832-836.
[14] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046.
[15] Takesue H, Sasaki T, Tamaki K, et al. Experimental quantum key distribution without monitoring signal disturbance[J]. Nature Photonics, 2015, 9(12): 827-831.
[16] Zhang Z, Yuan X, Cao Z, et al. Practical round-robin differential-phase-shift quantum key distribution[J]. New Journal of Physics, 2017, 19(3): 033013.
[17] Yin H L, Fu Y, Mao Y, et al. Detector-decoy quantum key distribution without monitoring signal disturbance[J]. Physical Review A, 2016, 93(2): 022330.
[18] Agarwal G S, Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 1986, 57(7): 827-830.
[19] Wang L, Zhao S. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources[J]. Quantum Information Processing, 2017, 16(4): 100.
[20] Zhang S L, Zou X B, Li C F, Jin C H, Guo G C, A universal coherent source quantum key distribution[J]. Chinese Science Bulletin, 2009, 54(11): 1863–1871. |