[1] |
Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. IEEE International Conference
|
|
on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984: 175-179.
|
[2] |
L¨utkenhaus N, Jahma M. Quantum key distribution with realistic states: Photon-number statistics in the photon-number splitting
|
|
attack [J]. New Journal of Physics, 2002, 4: 44.
|
[3] |
Gottesman D, Lo H K, L¨utkenhaus N, et al. Security of quantum key distribution with imperfect devices [J]. Quantum Information
|
|
and Computation, 2002, 91(5): 057901.
|
[4] |
Wang H, Zhou Y Y, Gong W B, et al. Quantum-classical hybrid optical network scheme based on PM protocol [J]. Advances
|
|
in Laser and Optoelectronics, 2020, 57(1): 012701.
|
|
王欢, 周媛媛, 龚文斌, 等. 基于PM 协议的量子-经典混合光网络方案[J]. 激光与光电子学进展, 2020, 57(1): 012701.
|
[5] |
Brassard G, L¨utkenhaus N, Mor T, et al. Limitations on practical quantum crytography [J]. Physical Review Letters, 2000,
|
85 |
(6): 1330-1333.
|
[6] |
HwangWY. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003,
|
91 |
(5): 057901.
|
[7] |
Ma X, Qi B, Zhao Y, Lo H K. Practical decoy state for quantum key distribution [J]. Physical Review A, 2005, 72(1): 012326.
|
[8] |
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2012,
|
10 |
8(13): 130503.
|
[9] |
Yin H L, Li H, Chen T Y. Measurement device independent quantum key distribution over a 404 km optical fiber [J]. Physical
|
|
Review Letters, 2016, 117: 190501.
|
[10] |
Pirandola S, Laurenza R, Ottaviani C, et al. Fundamental limits of repeaterless quantum communications [J]. Nature Communications,
|
20 |
17, 8(1): 621-669.
|
[11] |
Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum
|
|
repeaters [J]. Nature, 2018, 557(7705): 400-403.
|
[12] |
Yin H L, Fu Y. Measurement-device-independent twin-field quantum key distribution [J]. Scientific Reports, 2019, 9(1): 1301-
|
|
1350.
|
[13] |
Yin H L, Chen Z B. Finite-key analysis for twin-field quantum key distribution with composable security [J]. Scientific Reports,
|
20 |
19, 9(1): 465-467.
|
[14] |
Yu Z W, Hu X L, Jiang C, et al. Sending-or-not-sending twin-field quantum key distribution in practice [J]. Scientific Reports,
|
20 |
19, 9(1): 450-454.
|
[15] |
Curty M, Azuma K, Lo H K. Simple security proof of twin-field type quantum key distribution protocol [J]. Quantum Information,
|
20 |
19, 5(1): 1023-1030.
|
[16] |
Han D, Li Z H, Gao F F. Comparison and analysis of several quantum key distribution protocols [J]. Acta Sinica Quantum
|
|
Optica, 2019, 25(4): 380-386.
|
|
韩朵, 李志慧, 高菲菲. 几类量子密钥分发协议的比较与分析[J]. 量子光学学报, 2019, 25(4): 380-386.
|
[17] |
Ma X, Zeng P, Zhou H. Phase-matching quantum key distribution [J]. Physical Review X, 2018, 8(3): 031043.
|
[18] |
Wei Z C, Gao M, Ma Z. A statistical fluctuation analysis method for quantum key distribution based on Chernoff bounds [J].
|
|
Journal of University of Information Engineering, 2014, 15(4): 399-404.
|
|
魏正超, 高明, 马智. 基于切尔诺夫界的量子密钥分发统计涨落分析方法[J]. 信息工程大学学报, 2014, 15(4): 399-404.
|