Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (5): 547-563.doi: 10.3969/j.issn.1007-5461.2021.05.001
Previous Articles Next Articles
WANG Ye1;2, ZHANG Song1;2∗, ZHANG Bing1
Received:
2021-07-01
Revised:
2021-07-23
Published:
2021-09-28
Online:
2021-09-28
CLC Number:
WANG Ye, ZHANG Song, ∗, ZHANG Bing. Femtosecond transient absorption spectroscopy and its applications[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 547-563.
[1] Deisenhofer J, Epp O, Miki K, Huber R Michel H. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas-Viridis at 3? Resolution[J].1985,Nature,318:618-624.[2] Yu L-J, Suga M, Wang-Otomo Z Y, Shen, J R. Structure of photosynthetic LH1–RC supercomplex at 1.9 ? resolution[J]. 2018, Nature, 556: 209-213.[3] Qian P, Siebert C A, Wang P, Canniffe D P, Hunter C N. Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 ?[J]. 2018, Nature,556: 203-208.[4] Niwa S, Yu L, Takeda K, Hirano Y, Kawakami T, Wang-Otomo Z Y, Miki K. Structure of the LH1-RC complex from thermochromatium tepidum at 3.0 ?[J]. 2014, Nature, 508: 228-232.[5] Jahnke K, Ritzmann N, G?pfrich K. Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells[J]. 2021, Nature Comm., 12: 3967.[6] Trautman J K, Shreve A P, Violette C A, Frank H A, Owens T G, Albrecht A C. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides[J]. 1990, Proc. Nat. Acad. Sci., 87: 215-219.[7] Cheng Y, Fleming G R. Dynamics of light harvesting in photosynthesis[J]. 2009, Annu. Rev. Phys. Chem., 60: 241-262.[8] Kumar G S, Lin Q, Light-triggered click chemistry[J]. 2021, Chem. Rev.,121:6991-7031.[9] ?ebelík V, Kuznetsova V, Lokstein H, Polívka T. Transient absorption of chlorophylls and carotenoids after two-photon excitation of LHCII[J]. 2021, J. Phys. Chem. Lett., 12: 3176-3181[10] Kuramochi H, Tahara T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy[J]. 2021, J. Am. Chem. Soc., 143: 526-537[11] Kohler G. Derivation and diversification of monoclonal antibodies[J]. 1986, Science, 233:1276-1280.[12] Khundkar L R, Zewail A H. Ultrafast molecular reaction dynamics in real-time: Progress over a decade[J]. 1990, Annu. Rev. Phys. Chem., 41: 15-60.[13] Suzuki T. Femtosecond time-resolved photoelectron imaging[J]. 2006, Annu. Rev. Phys. Chem., 57: 555-592.[14] Suzuki T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases[J]. 2012, Int. Rev. Phys. Chem. 31: 265-318.[15] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. Hydrated electron dynamics: from clusters to bulk[J]. 2004, Science, 306: 669-671.[16] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. Electronic relaxation dynamics of water cluster anions[J]. 2004, J. Am. Chem. Soc., 127: 15283-15295.[17] King S B, Stephansen A B, Yokoi Y, Yandell M A, Kunin A, Takayanagi T, Neumark D M. Electron accommodation dynamics in the DNA base thymine[J]. 2015, J. Chem. Phys., 143: 024312.[18] Li W L, Kunin A, Matthews E, Yoshikawa N, Dessent C E H, Neumark D M. Photodissociation dynamics of the iodide-uracil (I?U) complex[J]. 2015, J. Chem. Phys., 145: 044319.[19] Kunin A, Li W L, Neumark D M. Time-resolved photoelectron imaging of iodide–nitromethane (I?·CH3NO2) photodissociation dynamics[J]. 2016, Phys. Chem. Chem. Phys., 18: 33226-33232.[20] Studzinski H, Zhang S, Wang Y, Temps F. Ultrafast nonradiative dynamics in electronically excited hexafluorobenzene by femtosecond time-resolved mass spectrometry[J]. 2008, J. Chem. Phys., 128: 164314.[21] Huter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F. Long-lived coherence in pentafluorobenzene as a probe of ππ* – πσ* vibronic coupling[J]. 2016, J. Chem. Phys., 145: 014302.[22] Huter O, Temps F. Ultrafast α-CC bond cleavage of acetone upon excitation to 3p and 3d Rydberg states by femtosecond time-resolved photoelectron imaging[J]. 2016, J. Chem. Phys., 145: 214312.[23] Noller B, Poisson L, Maksimenka R, Gobert O, Fischer I, Mestdagh J M. Ultrafast dynamics of isolated phenylcarbenes followed by femtosecond time-resolved velocity map imaging[J]. 2009, J. Phys. Chem. A, 113: 3041-3050.[24] Wang B, Liu B, Wang Y, Wang L. Ultrafast dynamics of pyridine in “channel three” region[J]. 2010, Int. J. Mass Spectrom., 289: 92-97.[25] Yang D, Chen Z, He Z, Wang H, Min Y, Yuan K, Dai D, Wu G, Yang X. Ultrafast excited-state dynamics of 2,4-dimethylpyrrole[J]. 2017, Phys. Chem. Chem. Phys., 19: 29146-29152.[26] Yang D, Min Y, Chen Z, He Z, Yuan K, Dai D, Yang X, Wu G. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole[J]. 2018, Phys. Chem. Chem. Phys., 20: 15015-15021.[27] He Z, Yang D, Chen Z, Yuan K, Dai D, Wu G, Yang X. An accidental resonance mediated predissociation pathway of water molecules excited to the electronic C state[J]. 2017, Phys. Chem. Chem. Phys., 19: 29795-29800.[28] Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L P H, Trinter F, Jahnke T, Sch?ffler M S, D?rner R. Zeptosecond birth time delay in molecular photoionization[J]. 2020, Science, 370: 339-341.[29] Dobryakov A L, Kovalenko S A, Weigel A, Pérez-Lustres J L, Lange J, Müller A, Ernsting N P. Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing[J]. 2010, Rev. Sci. Instrum. 81: 113106.[30] Zhang X X, Würth C, Zhao L, Resch-Genger U, Ernsting N P, Sajadi M. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction[J]. 2011, Rev. Sci. Instrum.82: 063108.[31] Zhang W, Xu W, Zhang G, Kong J, Niu X, Chan J M W, Liu W, Xia A. Direct tracking excited-state intramolecular charge redistribution of acceptor–donor–acceptor molecule by means of femtosecond stimulated Raman spectroscopy[J]. 2021, J. Phys. Chem. B, 125: 4456-4464.[32] Li S, Long J, Ling F, Wang Y, Song X, Zhang S, Zhang B. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging[J]. J. Chem. Phys., 2017, 147: 044309.[33] Zhou Q H, Zhou M M, Wei Y X, Zhou X G, Liu, S L, Zhang S, Zhang B Solvent effect on triplet-triplet annihilation upconversion of diiodo-bodipy and perylene[J]. 2017, Phys. Chem. Chem. Phys., 19: 1516-1525.[34] Wei Y X, Zhou, M M, Zhou, Q H, Zhou X G, Liu S L, Zhang S, Zhang B. Triplet-triplet annihilation upconversion kinetics of c60-bodipy dyads as organic triplet photosensitizers[J]. 2017, Phys. Chem. Chem. Phys., 19: 22049-22060.[35] Zhang S, Sun S, Zhou M, Wang L, Zhang B. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product[J]. 2017, Sci. Rep., 7: 43419.[36] Wang Y, Tang Y, Zhang S, Long J, Zhang B. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging[J]. 2018, Acta Phys. Sin., 67: 227802.[37] Zhou M, Zhang S, Wang L, Zhang B. Ultrafast photoinduced charge transfer character in o?oxacin singlet decay[J]. 2018, Chem. Phys. Lett., 710: 1-5.[38] Wang Y, Li C, Zhang B, Qin C, Zhang S. Ultrafast investigation of excited-state dynamics in trans-4-methoxyazobenzene studied by femtosecond transient absorption spectroscopy[J]. 2018, Chin. J. Chem. Phys., 31: 749-755.[39] Sun S, Zhang S, Jiang C, Guo X, Hu Y. Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents[J]. 2018, Chin. Phys. B, 27: 083401.[40] Wu K, Zhang T, Wang Z, Wang L, Zhan L, Gong S, Zhong C, Lu Z, Zhang S, Yang C. De novo design of excited-state intramolecular proton transfer emitters via a thermally activated delayed fluorescence channel[J]. 2018, J. Am. Chem. Soc., 140: 8877-8886.[41] Xiong J, Yuan Y, Wang L, Sun J, Qiao W, Zhang H, Duan M, Han H, Zhang S, Zheng Y. Evidence for aggregation-induced emission from free rotation restriction of double bond at excited state[J]. 2018, Org. Lett., 20: 373-376.[42] Zhou M, Wang L, Zhang S, Zhang B. Ultrafast spectroscopy of the primary charge transfer and ISC processes in 9-anthraldehyde[J]. 2019, Chem. Phys. Lett., 717: 1-6.[43] Liu C, Bao L, Yang M, Zhang S, Zhou M, Tang B, Wang B, Liu Y, Zhang Z L, Zhang B, Pang D W. Surface sensitive photoluminescence of carbon nanodots coupling between the carbonyl group and π?electron system[J]. 2019, J. Phys. Chem. Lett., 10: 3621-3629.[44] Chen Z, Yu Z, Zhou M, Zhang S, Zhang B, Liu Y, Zhao Y, Cao H, Lin Y, Zhang Z L, Pang D W. Chlorophyll-based near-infrared fluorescent nanocomposites preparation and optical properties[J]. 2020, ACS Omega, 5:14261-14266.[45] Lei H, Dai P, Wang X, Pan Z, Guo Y, Shen H, Chen J, Xie J, Zhang B, Zhang S, Tan Z In situ defects passivation with silica oligomer for enhanced performance and stability of perovskite solar cells[J]. 2020, Adv. Mater. Inter., 7: 1901716.[46] Liang Y, Guo Y, Wang Y, Zhang S, Pan Y, Shi Y, Wang Y, Zhu L, Jin B, Sun Y, Zhang B, Feng X, Yuan M, Wang H, Zhao G. Combined ultrafast spectroscopic and TDDFT theoretical studies on dual fluorescence emissions promoted by LMCT excited states of tungsten-containing organometallic complexes[J]. 2020, Chem. Phys. Lett., 748: 137396.[47] Shi Y, Zhao X, Wang C, Wang Y, Zhang S, Li P, Feng X, Jin B, Yuan M, Cui S, Sun Y, Zhang B, Sun S, Jin X, Wang H, Zhao G. Ultrafast nonadiabatic photoisomerization dynamics mechanism for the UV photoprotection of stilbenoids in grape skin[J]. 2020, Chem. Asian J., 15: 1478-1483.[48] Shu G, Wang Y, Li Y, Zhang S, Jiang J, Wang F. A high performance and low cost poly(dibenzothiophene-S,S-dioxide)@TiO2 composite with hydrogen evolution rate up to 51.5 mmol h-1 g-1[J]. 2020, J. Mater. Chem. A, 8: 18292.[49] Wei Y X, Wang Y, Zhou Q H, Zhang S, Zhang B, Zhou X G, Liu S L. Solvent effects on triplet–triplet annihilation upconversion kinetics of perylene with a Bodipy-phenyl-C60 photosensitizer[J]. 2020, Phys. Chem. Chem. Phys., 22: 26372-26382.[50] Wang L, Zhang S, Wang Y, Zhang B. Dispersion-induced structural preference in the ultrafast dynamics of diphenyl ether[J]. 2020, RSC Adv., 10:18093-18098.[51] Wang L, Zhang S, Wang Y, Zhang B. Effect of hydrogen bonding on the nonradiative properties of dibenzofuran[J]. 2020, Spectrochim. Acta A, 224: 117466.[52] Wang L, Zhang S, Wang Y, Zhang B. The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy[J]. 2020, Z. Phys. Chem., 234: 1495-1506.[53] Yang M, Liu C, Peng Y, Xiao R, Zhang S, Zhang Z L, Zhang B, Pang, D W. Surface chemistry tuning the selectivity of carbon nanodots towards Hg2+ recognition[J]. 2021, Anal. Chim. Acta, 1146: 33-40.[54] Wang Y, Guo Y, Liang Y, Pan Y, Shi Y, Wang Y, Zhang S, Jin B, Zhao G. Coordination-promoted photoluminescence induced by configuration twisting regulation[J]. 2021, J. Luminescence, 231: 117783.[55] Wang M, Shi Y, Guo Y, Chen Y, Zhao C, Zhou Y, Xiao Y., Wang Y, Zhang S, Jin B, Wu Z, Zhao G. Nonadiabatic dynamics Mechanisms of natural UV Photoprotection compounds chlorogenic acid and isochlorogenic acid a: Double conjugated structures but single photoexcited channel[J]. 2021, J. Mol. Liq., 324: 114725.[56] Sebastian B V, Magar R T, Breen D J, Rack J J. A future perspective on phototriggered isomerizations of transition metal sulfoxides and related complexes[J]. 2021, J. Am. Chem. Soc., 143: 526-537.[57] Carpenter B K, Harvey J N, Orr-Ewing A J. The study of reactive intermediates in condensed phases[J]. 2016, J. Am. Chem. Soc., 138: 4695-4705.[58] Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques[J]. 2013, Chem. Rev., 113: 1736-1850.[59] Rasmusson M, Tarnovsky A N, Kesson E, On the use of two-photon absorption for determination of femtosecond pump–probe cross-correlation functions[J]. 2001, Chem. Phys. Lett., 335: 201-208.[60] Ekvall K, Van Der Meulen P, Dhollande C. Cross phase modulation artifact in liquid phase transient absorption spectroscopy[J]. 2000, J. Appl. Phys., 87: 2340-2352.[61] Dietzek B, Pascher T, Sundstr?m V. Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design[J]. 2006, Laser Phys. Lett., 4: 38.[62] Kovalenko S, Ernsting N, Ruthmann J. Femtosecond hole-burning spectroscopy of the dye DCM in solution: the transition from the locally excited to a charge-transfer state[J]. 1996, Chem. Phys. Lett., 258: 445-454.[63] Dobryakov A, Kovalenko S, Ernsting N. Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution[J]. 2005, J. Chem. Phys., 123: 044502.[64] Ziolek M, Lorenc M, Naskrecki R. Determination of the temporal response function in femtosecond pump-probe systems[J]. 2001, Appl. Phys. B, 72: 843-847.[65] Kovalenko S A, Dobryakov A L, Ruthmann J, Ernsting N P. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing[J]. 1999, Phys. Rev. A, 59: 2369-2384.[66] Oleinick N L, Morris R L, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how[J]. 2002, Photochem. Photobiol. Sci., 1: 1-12.[67] Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, Yuan A, Wu J, Hu Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J]. 2015, Nature Comm., 6: 8785.[68] Morris R L, Azizuddin K, Lam M, Berlin J, Nieminen A L, Kenney M E, Samia A C S, Burda C, Oleinick N L Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy[J]. 2003, Cancer Res., 63: 5194-5197.[69] Cosa G. Photodegradation and photosensitization in pharmaceutical products: assessing drug phototoxicity[J]. 2004, Pure Appl. Chem., 76, 263-275.[70] Pogue B W, Momma T, Wu H C, Hasan T. Transient absorption changes in vivo during photodynamic therapy with pulsed laser light[J]. 1999, British J. Cancer, 80: 344-351.[71] Schuster G B. Long-range charge transfer in DNA: transient structural distortions control the distance dependence[J]. 2000, Acc. Chem. Res., 33: 253-260.[72] Shao F W, Augustyn K, Barton J K. Sequence dependence of charge transport through DNA domains[J]. 2005, J. Am. Chem. Soc., 127: 17445-17452.[73] Bergeron F, Nair V K, Wagner J R. Near-UV induced interstrand cross-links in anthraquinone-DNA duplexes[J]. 2006, J. Am. Chem. Soc., 128: 14798-14799.[74] Williams T T, Dohno C, Stemp E D A, Barton J K. Effects of the photooxidant on DNA-mediated charge transport[J]. 2004, J. Am. Chem. Soc., 126: 8148-8158.[75] Qu X, Wan C, Becker H, Zhong D, Zewail A H. The anticancer drug–DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function[J]. 2001, Proc. Natl. Acad. Sci., 98: 14212-14217.[76] Armitage B, Yu C J, Devadoss C, Schuster G B. Cationic anthraquinone derivatives as catalytic DNA photonucleases: mechanisms for DNA damage and quinone recycling[J]. 1994, J. Am. Chem. Soc., 116: 9847-9859.[77] Sun S. Zhang S, Liu K, Wang Y P, Zhou M M, Zhang B. Excited state intramolecular proton transfer of 1-hydroxyanthraquinone[J]. 2015, Chin. J. Chem. Phys. 28: 545-551.[78] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases[J]. 1993, Chem. Rev., 93: 2295-2316.[79] McKnight R E, Zhang J G, Dixon D W. Binding of a homologous series of anthraquinones to DNA[J]. 2004, Bioorg. Med. Chem. Lett., 14: 401-404.[80] Breslin D T, Coury J E, Anderson J R, McFail-Isom L, Kan Y, Williams L D, Bottomley L A, Schuster G B. Anthraquinone photonuclease structure determines its mode of binding to DNA and the cleavage chemistry observed[J]. 1997, J. Am. Chem. Soc., 119: 5043-5044.[81] Carmieli R, Smeigh A L, Conron S M M, Thazhathveetil A K, Fuki M, Kobori Y, Lewis F D, Wasielewski M R. Structure and dynamics of photogenerated triplet radical ion pairs in DNA hairpin conjugates with anthraquinone end caps[J]. 2012, J. Am. Chem. Soc., 134: 11251-11260.[82] Müller C, Schroeder J, Troe J. Intramolecular hydrogen bonding in 1, 8-dihydroxyanthraquinone, 1-aminoanthraquinone, and9-hydroxyphenalenone studied by picosecond time-resolved fluorescence spectroscopy in a supersonic jet[J]. 2006, J. Phys. Chem. B, 110: 19820-19832.[83] Joh N H, Oberai A, Yang D, Whitelegge J P, Bowie J U. Similar energetic contributions of packing in the core of membrane and water-soluble proteins[J]. 2009, J. Am. Chem. Soc., 131: 10846-10847.[84] Hanlon S. The importance of London dispersion forces in the maintenance of thedeoxyribonucleic acid helix[J]. 1966, Biochem. Biophys. Res. Comm., 23: 861-867.[85] Canuto S. Solvation effects on molecules and biomolecules: computational methods and applications. Springer Netherlands, 2008.[86] Funk D J, Oldenburg R C, Dayton D P, Lacosse J P, Draves J A, Logan T J. Gas-phase absorption and laser-induced fluorescence measurements of representative polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and a polycyclic aromatic hydrocarbon[J]. 1995, Appl. Spectrosc., 49: 105-114.[87] Alawi M, Wichmann H, Lorenz W, Bahadir M. Dioxins and furans in the Jordanian environment part 2: Levels of PCDD and PCDF in human milk samples from Jordan[J]. 1996, Chemosphere, 33: 2469-2474.[88] Aylward L L, Hays S M, Karch N J, Paustenbach D J. Relative susceptibility of animals and humans to the cancer hazard posed by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin using internal measures of dose[J]. 1996, Environmental Sci. Tech., 30: 3534-3543.[89] Faroon O, Jones D, De Rosa C. Effects of polychlorinated biphenyls on the nervous system[J]. 2000, Toxicol. Indust Health, 16: 305-333.[90] Lehn J M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, andmolecular devices (Nobel Lecture) [J]. 1988, Angew. Chem. Int. Ed., 27: 89-112.[91] ?erny J, Hobza P. Non-covalent interactions in biomacromolecules[J]. 2007, Phys. Chem. Chem. Phys., 9: 5291-5303.[92] Meyer E A, Castellano R K, Diederich F. Interactions with aromatic rings in chemical and biological recognition[J]. 2003, Angew. Chem. Int. Ed., 42: 1210-1250.[93] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. 2012, Nature, 492: 234-238.[94] Fang C, Frontiera R R, Tran R, Mathies R A. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy[J]. 2009, Nature, 462: 200-205.[95] Chen C L, Chen Y T, Demchenko A P, Chou P T. Amino proton donors in excited-state intramolecular proton-transfer reactions[J]. 2018, Nature Rev. Chem., 2: 131-143.[96] Jacquemin D, Zú?iga J, Requena A, Céron-Carrasco J P. Assessing the importance of proton transfer reactions in DNA[J]. 2014, Acc. Chem. Res., 47: 2467-2474.[97] Lim X. The nanolight revolution is coming[J]. 2016, Nature, 531: 26–28.[97] Vrakking M J?J. Control of attosecond entanglement and coherence[J]. 2021, Phys. Rev. Lett., 126: 113203.[98] Bertolino M, Dahlstr?m J M. Multiphoton interaction phase shifts in attosecond science[J]. 2021, Phys. Rev. Research, 3: 013270.[99] Dombi P, Pápa Z, Vogelsang J, Yalunin S V, Sivis M, Herink G, Sch?fer S, Gro? P, Ropers C, Lienau C. Strong-field nano-optics[J]. 2020, Rev. Mod. Phys., 92: 025003.[100] Chergui M, Collet E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods[J]. 2017, Chem. Rev., 117: 11025-11065.[101] Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the art and open challenges[J]. 2020, J. Am. Chem. Soc. 142: 3-15.[102] Guo Z, Wan Y, Yang M, Snaider J, Zhu K, Huang L. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. 2017, Science, 356: 59-62.[103] Nah S, Spokoyny B, Stoumpos C, Soe C M M, Kanatzidis M, Harel E. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains[J]. 2017, Nature Photon., 11: 285.[104] Schnedermann C, Lim J M, Wende T, Duarte A S, Ni L, Gu Q, Sadhanala R. A., Kukura, P. Sub-10 fs time-resolved vibronic optical microscopy[J]. 2016, J. Phys. Chem. Lett., 7: 4854-4859.[105] Chen A J, Yuan X, Li J, Dong P, Hamza I, Cheng J. label-free imaging of heme dynamics in living organisms by transient absorption microscopy[J]. 2018, Anal. Chem., 90: 3395-3401. |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[13] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
[14] | YU Wei, ZHOU Zhuoyan, SUN Zhongmou, ZHANG Xinglong, LIU Yuzhu, . Real-time detection of the genus Rosa L. using LIBS technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 494-501. |
[15] | DING Bokun, SHAO Ligang, WANG Kunyang, CHEN Jiajin, WANG Guishi, LIU Kun, MEI Jiaoxu, TAN Tu, GAO Xiaoming, ∗. Research on real-time detection technology of dissolved gas in seawater based on off-axis integrating cavity [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||