Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (6): 751-773.doi: 10.3969/j.issn.1007-5461.2021.06.003
Previous Articles Next Articles
CHEN Junhua 1 , WANG Hao 1 , ZHENG Yang 1 , CHENG Wanying 1 , LI Weixing 2∗ , XU Xuefang 1 , GOU Qian 1,3∗
Received:
2021-07-07
Revised:
2021-08-16
Published:
2021-11-28
Online:
2021-11-28
CLC Number:
CHEN Junhua , WANG Hao , ZHENG Yang , CHENG Wanying , LI Weixing ∗ , XU Xuefang , GOU Qian , ∗. Rotational spectroscopic studies on intermolecular σ-hole and π-hole non-covalent interactions[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 751-773.
[1]Schneider H J.Binding mechanisms in supramolecular complexes[J].Angewandte Chemie International Edition, 2009, 48(22):3924-3977 [2]Scheiner S.Steric crowding in tetrel bonds[J].The Journal of Physical Chemistry A, 2018, 122(9):2550-2562 [3]Mundlapati V R, Sahoo D K, Bhaumik S, et al.Noncovalent carbon‐bonding interactions in proteins[J].Angewandte Chemie International Edition, 2018, 57(50):16496-16500 [4]Wang H, Chen J, Duan C, et al.Switching aromatic character by complexation: π to π* change seen in molecular rotation spectra[J].The Journal of Physical Chemistry Letters, 2021, 12:5150-5155 [5]Chen J, Zheng Y, Wang J, et al.Weak hydrogen bond topology in 1,1-difluoroethane dimer: A rotational study[J].The Journal of Chemical Physics, 2017, 147(9):094301- [6]Chen J, Zheng Y, Melli A, et al.Theory meets experiment for elucidating the structure and stability of non-covalent complexes: water-amine interaction as a proof of concept[J].Physical Chemistry Chemical Physics, 2020, 22(9):5024-5032 [7]Chen C, Zhang Z, Jin S, et al.Enzyme‐inspired chiral secondary‐phosphine‐oxide ligand with dual noncovalent interactions for asymmetric hydrogenation[J].Angewandte Chemie, 2017, 129(24):6912-6916 [8]Ushakov I E, Goloveshkin A S, Lenenko N D, et al.Hydrogen bond-driven self-assembly between single-layer MoS2 and alkyldiamine molecules[J].Crystal Growth & Design, 2018, 18(9):5116-5123 [9]Zheng X, Zhang L, Li J, et al.Magnetic nanoparticle supported polyoxometalates (POMs) via non-covalent interaction: reusable acid catalysts and catalyst supports for chiral amines[J].Chemical Communications, 2011, 47(45):12325-12327 [10]Paton R S.Dissecting non-covalent interactions in oxazaborolidinium catalyzed cycloadditions of maleimides[J].Organic & Biomolecular Chemistry, 2014, 12(11):1717-1720 [11]Clark T, Hennemann M, Murray J S, et al.Halogen bonding: the σ-hole[J].Journal of Molecular Modeling, 2007, 13(2):291-296 [12]Wolters L P, Schyman P, Pavan M J, et al.The many faces of halogen bonding: a review of theoretical models and methods[J].Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4(6):523-540 [13]Bauza A, Mooibroek T J, Frontera A.Tetrel bonding interactions[J].Chemical Record, 2016, 16(1):473-487 [14]Biczysko M, Bloino J, Puzzarini C.Computational challenges in astrochemistry[J].Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8(3):e1349- [15]Puzzarini C, Bloino J, Tasinato N, et al.Accuracy and interpretability: the devil and the holy grailNew routes across old boundaries in computational spectroscopy[J].Chemical Reviews, 2019, 119(13):8131-8191 [16]Grimme S.Density functional theory with London dispersion corrections[J].WIREs Computational Molecular Science, 2011, 1(2):211-228 [17]Grimme S, Hansen A, Brandenburg J G, et al.Dispersion-corrected mean-field electronic structure methods[J].Chemical Reviews, 2016, 116(9):5105-5154 [18]Shukla R, Chopra D.Characterization of N?O non-covalent interactions involving σ-holes: “electrostatics” or “dispersion”[J].Physical Chemistry Chemical Physics, 2016, 18(43):29946-29954 [19]Remya K, Suresh C H.Intermolecular carbon–carbon,nitrogen–nitrogen and oxygen–oxygen non-covalent bonding in dipolar molecules[J].Physical Chemistry Chemical Physics, 2015, 17(28):18380-18392 [20]Chen J, Wang H, Kisiel Z, et al.Hydrogen versus tetrel bonds in complexes of 3-oxetanone with water and formaldehyde[J].Physical Chemistry Chemical Physics, 2021, 23(12):7295-7301 [21]Konarev D V, Neretin I S, Slovokhotov Y L, et al.New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)],in which M = H2,Mn,Co,Cu,Zn,and FeCl[J].Chemistry - A European Journal, 2001, 7(12):2605-2616 [22]Kornreich M, Avinery R, Beck R.Modern X-ray scattering studies of complex biological systems[J].Current Opinion in Biotechnology, 2013, 24(4):716-723 [23]Leopold K R, Fraser G T, Novick S E, et al.Current themes in microwave and infrared spectroscopy of weakly bound complexes[J].Chemical Reviews, 1994, 94(7):1807-1827 [24]Czarnecki M A, Morisawa Y, Futami Y, et al.Advances in molecular structure and interaction studies using near-Infrared spectroscopy[J].Chemical Reviews, 2015, 115(18):9707-9744 [25]Nesbitt D J.High-resolution infrared spectroscopy of weakly bound molecular complexes[J].Chemical Reviews, 1988, 88(6):843-870 [26]Felker P M, Maxton P M, Schaeffer M W.Nonlinear raman studies of weakly bound complexes and clusters in molecular beams[J].Chemical Reviews, 1994, 94(7):1787-1805 [27]Nesbitt D J.Toward state-to-state dynamics in ultracold collisions: Lessons from high-resolution spectroscopy of weakly bound molecular complexes[J].Chemical Reviews, 2012, 112(9):5062-5072 [28]Becucci M, Melandri S.High-resolution spectroscopic studies of complexes formed by medium-size organic molecules[J].Chemical Reviews, 2016, 116(9):5014-5037 [29]Madl T, Gabel F, Sattler M.NMR and small-angle scattering-based structural analysis of protein complexes in solution[J].Journal of Structural Biology, 2011, 173(3):472-482 [30]Wilkin O M, Harris N, Rooms J F, et al.How inert,perturbing,or interacting are cryogenic matrices? A combined spectroscopic (infrared,electronic,and X-ray absorption) and DFT investigation of matrix-isolated iron,cobalt,nickel,and zinc dibromides[J].The Journal of Physical Chemistry A, 2018, 122(8):1994-2029 [31]Steiner T.The hydrogen bond in the solid state[J].Angewandte Chemie International Edition, 2002, 41(1):48-76 [32]Zhang J, Chen P, Yuan B, et al.Real-space identification of intermolecular bonding with atomic force microscopy[J].Science, 2013, 342(6158):611-614 [33]Dian B C, Brown G G, Douglass K O, et al.Measuring picosecond isomerization kinetics via broadband microwave spectroscopy[J].Science, 2008, 320(5878):924-928 [34]Pérez C, Muckle M T, Zaleski D P, et al.Structures of cage,prism,and book isomers of water hexamer from broadband rotational spectroscopy[J].Science, 2012, 336(6083):897-901 [35]Crabtree K N, Talipov M R, Martinez O, et al.Detection and structure of HOON: microwave spectroscopy reveals an O–O bond exceeding 19 ?[J].Science, 2013, 342(6164):1354-1357 [36]Mackenzie R B, Dewberry C T, Leopold K R.Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride[J].Science, 2015, 349(6243):58-61 [37]Chen J, Wang J, Zheng Y, et al.Halogen bond in the water adduct of chloropentafluoroethane revealed by rotational spectroscopy[J].The Journal of Chemical Physics, 2018, 149(15):154307- [38]Strandberg M W P, Meng C Y, Ingersoll J G.The microwave absorption spectrum of oxygen[J].Physical Review, 1949, 75(10):1524- [39]Hughes R H, Wilson Jr E B.A microwave spectrograph[J].Physical Review, 1947, 71(8):562-563 [40]McAfee Jr K B, Hughes R H, Wilson Jr E B.A Stark‐effect microwave spectrograph of high sensitivity[J].Review of Scientific Instruments, 1949, 20(11):821-826 [41]Cleeton C E, Williams N H.Electromagnetic waves of 11 cm wave-length and the absorption spectrum of ammonia[J].Physical Review, 1934, 45(4):234-237 [42]Balle T J, Campbell E J, Keenan M R, et al.A new method for observing the rotational spectra of weak molecular complexes: KrHCl[J].The Journal of Chemical Physics, 1979, 71(6):2723-2724 [43]Balle T J, Flygare W H.Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source[J].Review of Scientific Instruments, 1981, 52(1):33-45 [44]Brown G G, Dian B C, Douglass K O, et al.A broadband Fourier transform microwave spectrometer based on chirped pulse excitation[J].Review of Scientific Instruments, 2008, 79(5):053103- [45]Brinck T, Murray J S, Politzer P.Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions[J].International Journal of Quantum Chemistry, 1992, 44(S19):57-64 [46]Politzer P, Murray J S, Clark T.Halogen bonding: an electrostatically-driven highly directional noncovalent interaction[J].Physical Chemistry Chemical Physics, 2010, 12(28):7748-7757 [47]Murray J S, Lane P, Politzer P.A predicted new type of directional noncovalent interaction[J].International Journal of Quantum Chemistry, 2007, 107(12):2286-2292 [48]Shields Z P, Murray J S, Politzer P.Directional tendencies of halogen and hydrogen bonds[J].International Journal of Quantum Chemistry, 2010, 110(15):2823-2832 [49]Murray J S, Lane P, Clark T, et al.hole bonding: molecules containing group VI atoms[J].Journal of Molecular Modeling, 2007, 13(10):1033-1038 [50]Juanes M, Saragi R T, Caminati W, et al.The hydrogen bond and beyond: Perspectives for rotational investigations of non‐covalent interactions[J].Chemistry–A European Journal, 2019, 25(49):11402-11411 [51]LaBarge M S, Andrews A M, Taleb-Bendiab A, et al.Microwave spectrum,structure,and dipole moment of the phosphorus trifluoride-water complex[J].Journal of Physical Chemistry, 1991, 95(9):3523-3527 [52]Cooke S A, Cotti G, Evans C M, et al.Pre-reactive complexes in mixtures of water vapour with halogens: Characterisation of H2O···ClF and H2O···F2 by a combination of rotational spectroscopy and ab initio calculations[J].Chemistry – A European Journal, 2001, 7(11):2295-2305 [53]Bloemink H I, Hinds K, Holloway J H, et al.Characterisation of a pre-reactive intermediate in gas-phase mixtures of fluorine and ammonia: the rotational spectrum of the H3N···F2 complex[J].Chemical Physics Letters, 1995, 245(6):598-604 [54]Cotti G, Cooke S A, Evans C M, et al.A complex of molecular fluorine with an organic compound detected in the gas phase: the rotational spectrum of CH3CN···F2[J].Chemical Physics Letters, 1996, 260(3):388-394 [55]Evans C M, Holloway J H, Legon A C.Rotational spectrum and angular geometry of a pre-reactive complex of oxirane and F2[J].Chemical Physics Letters, 1997, 267(3):281-287 [56]Cotti G, Evans C M, Holloway J H, et al.Rotational spectroscopy of a pre-reactive mixture of H2S and F2: detection and characterisation of the weakly bound complex H2S···F2[J].Chemical Physics Letters, 1997, 264(5):513-521 [57]Legon A C, Warner H E.Isolation of stable intermediates in reactive gas mixtures: Rotational spectrum of H3P···Cl2 in a pulsed jet[J].The Journal of Chemical Physics, 1993, 98(5):3827-3832 [58]Legon A, Thorn J.Identification and characterisation of the gas-phase complex HCN?Cl2 by rotational spectroscopy[J].Journal of the Chemical Society, Faraday Transactions, 1993, 89(23):4157-4162 [59]Legon A, Lister D G, Thorn J C.Non-reactive interaction of ammonia and molecular chlorine: rotational spectrum of the ‘charge-transfer’complex H3N?Cl2[J].Journal of the Chemical Society, Faraday Transactions, 1994, 90(21):3205-3212 [60]Bloemink H I, Hinds K, Legon A C, et al.Properties of the intermediate ethyne···Cl2 from its rotational spectrum and some generalisations for a series B···Cl2[J].Chemical Physics Letters, 1994, 223(3):162-166 [61]Bloemink H I, Hinds K, Legon A C, et al.Can the pre-equilibrium molecular complex in a reactive mixture of ethene and chlorine be characterised?: an answer from rotational spectroscopy [J]. Journal of the Chemical Society, Chemical Communications, 1994, 11): 1321-1322. [62]Davey J B, Legon A C.A gas phase complex of acetylene and bromine: geometry,binding strength and charge transfer from rotational spectroscopy[J].Chemical Physics Letters, 2001, 350(1):39-50 [63]Bloemink H, Hinds K, Legon A, et al.Pre-reactive intermediates in mixtures of hydrocarbons with chlorine monofluoride: characterisation of ethyne?ClF and ethene?ClF by rotational spectroscopy [J]. Journal of the Chemical Society, Chemical Communications, 1995, 18): 1833-1834. [64]Bloemink H I, Hinds K, Holloway J H, et al.Isolation of H2S···ClF in a pre-reactive mixture of H2S and ClF expanded in a coaxial jet and characterisation by rotational spectroscopy[J].Chemical Physics Letters, 1995, 242(1):113-120 [65]Hinds K, Legon A C.The geometry and intermolecular binding of HCN···BrCl probed by rotational spectroscopy[J].Chemical Physics Letters, 1995, 240(5):467-473 [66]Davey J B, Legon A C, Waclawik E R.Electric charge redistribution in BrCl resulting from interaction with Ar: the rotational spectrum of the linear complex Ar?BrCl[J].Chemical Physics Letters, 2001, 346(1):103-111 [67]Davey J B, Legon A C, Waclawik E R.Iodine and chlorine nuclear quadrupole coupling in the rotational spectra of Ar···ICl and ICl: intramolecular charge transfer induced in ICl by Ar[J].Chemical Physics Letters, 1999, 306(3):133-144 [68]Legon A C, Waclawik E R.Angular geometry,binding strength and charge transfer for the complex H2S···ICl determined by rotational spectroscopy[J].Chemical Physics Letters, 1999, 312(5):385-393 [69]B.Davey J,CLegon A,R. Waclawik E. Inter- and intramolecular electron transfer in the complex OC···ICl determined from iodine and chlorine nuclear quadrupole hyperfine structure in its rotational spectrum[J].Physical Chemistry Chemical Physics, 1999, 1(13):3097-3101 [70]B.Davey J,CLegon A. Rotational spectroscopy of mixtures of ethyne and iodine monochloride: isolation and characterisation of the π-type complex C2H2···ICl[J].Physical Chemistry Chemical Physics, 1999, 1(16):3721-3726 [71]Thumwood J M A, Legon A C.A π-electron donor–acceptor complex of ethene and iodine monochloride: geometry,binding strength and charge redistribution determined by rotational spectroscopy[J].Chemical Physics Letters, 1999, 310(1):88-96 [72]R.Waclawik E,CLegon A. Halogen nuclear quadrupole coupling in the rotational spectrum of H3N···ICl as a probe of inter- and intramolecular charge transfer[J].Physical Chemistry Chemical Physics, 1999, 1(20):4695-4700 [73]A.Herrebout W,CLegon A,R. Waclawik E. Is there significant intermolecular charge transfer in the ground state of the HCN···ICI complex? An answer from rotational spectroscopy[J].Physical Chemistry Chemical Physics, 1999, 1(21):4961-4966 [74]Davey J B, Legon A C, Waclawik E R.An investigation of the gas-phase complex of water and iodine monochloride by microwave spectroscopy: geometry,binding strength and electron redistribution[J].Physical Chemistry Chemical Physics, 2000, 2(8):1659-1665 [75]Davey J B, Legon A C, Waclawik E R.Inter- and intramolecular electronic transfer on formation of H3P···ICl as determined by rotational spectroscopy[J].Physical Chemistry Chemical Physics, 2000, 2(10):2265-2269 [76]Davey J B, Legon A C, Waclawik E R.Measurement of inter- and intramolecular charge transfer in the complex N2···ICl from analysis of halogen nuclear quadrupole hyperfine structure in the rotational spectrum[J].Journal of Molecular Structure: THEOCHEM, 2000, 500(1):403-411 [77]Legon A C.Angular and radial geometries,charge transfer and binding strength in isolated complexes B···ICl: some generalisations[J].Chemical Physics Letters, 1999, 314(5):472-480 [78]Legon A C.Mulliken naσ and bπ.aσ complexes B···Cl2 in the gas phase: rules for predicting angular geometries and nature of the interaction[J].Chemical Physics Letters, 1995, 237(3):291-298 [79]Evangelisti L, Feng G, Ecija P, et al.The halogen bond and internal dynamics in the molecular complex of CF3Cl and H2O[J].Angewandte Chemie International Edition, 2011, 50(34):7807-7810 [80]Gou Q, Feng G, Evangelisti L, et al.Internal dynamics in halogen-bonded adducts: a rotational study of chlorotrifluoromethane-formaldehyde[J].Chemistry, 2015, 21(10):4148-4152 [81]Evangelisti L, Feng G, Gou Q, et al.Halogen bond and free internal rotation: the microwave spectrum of CF3Cl-dimethyl ether[J].The Journal of Physical Chemistry A, 2014, 118(3):579-582 [82]Feng G, Evangelisti L, Gasparini N, et al.On the Cl···N halogen bond: a rotational study of CF3Cl···NH3[J].Chemistry – A European Journal, 2012, 18(5):1364-1368 [83]Gou Q, Vallejo López M, Spada L, et al.Halogen bond and internal dynamics in the σ-complex of pyridine-chlorotrifluoromethane: a rotational study [J]. Journal of Molecular Spectroscopy, 2020, 371(111323. [84]Gou Q, Spada L, Cocinero E J, et al.Halogen-halogen links and internal dynamics in adducts of freons[J].The Journal of Physical Chemistry Letters, 2014, 5(9):1591-1595 [85]Caminati W, Evangelisti L, Feng G, et al.On the Cl···C halogen bond: a rotational study of CF3Cl-CO[J].Physical Chemistry Chemical Physics, 2016, 18(27):17851-17855 [86]Stephens S L, Walker N R, Legon A C.Rotational spectra and properties of complexes B···ICF3 (B = Kr or CO) and a comparison of the efficacy of ICl and ICF3 as iodine donors in halogen bond formation[J].The Journal of Chemical Physics, 2011, 135(22):224309- [87]Anable J P, Hird D E, Stephens S L, et al.Characterisation of the weak halogen bond in N2···ICF3 by pure rotational spectroscopy [J]. Chemical Physics Letters, 2015, 625(179-185. [88]Stephens S L, Walker N R, Legon A C.Internal rotation and halogen bonds in CF3I···NH3 and CF3I···N(CH3)3 probed by broadband rotational spectroscopy[J].Physical Chemistry Chemical Physics, 2011, 13(46):20736-20744 [89]Stephens S, Walker N, Legon A.Molecular geometries of H2S···ICF3 and H2O···ICF3 characterised by broadband rotational spectroscopy [J]. Physical Chemistry Chemical Physics, 2011, 13(21093-21101. [90]Stephens S L, Mizukami W, Tew D P, et al.The halogen bond between ethene and a simple perfluoroiodoalkane: C2H4···ICF3 identified by broadband rotational spectroscopy [J]. Journal of Molecular Spectroscopy, 2012, 280(47-53. [91]Millen D J.Determination of stretching force constants of weakly bound dimers from centrifugal distortion constants[J].Canadian Journal of Chemistry, 1985, 63(7):1477-1479 [92]Read W G, Campbell E J, Henderson G.The rotational spectrum and molecular structure of the benzene–hydrogen chloride complex[J].The Journal of Chemical Physics, 1983, 78(6):3501-3508 [93]Geboes Y, De Vleeschouwer F, De Proft F, et al.Exploiting the σ-hole concept: An infrared and raman-based characterization of the S···O chalcogen bond between 2,2,4,4-tetrafluoro-1,3-dithiethane and dimethyl ether[J].Chemistry – A European Journal, 2017, 23(68):17384-17392 [94]Lu T, Zheng Y, Gou Q, et al.Rotational characterization of S?F chalcogen bonds in the complex of 2,2,4,4-tetrafluoro-1,3-dithietane and difluoromethane[J].Physical Chemistry Chemical Physics, 2019, 21(44):24659-24665 [95]Jin Y, Li X, Gou Q, et al.Chalcogen bond and internal dynamics of the 2,2,4,4-tetrafluoro-1,3-dithietane···water complex[J].Physical Chemistry Chemical Physics, 2019, 21(28):15656-15661 [96]Li X, Lengsfeld K G, Buschmann P, et al.The 2, 2, 4, 4-tetrafluoro-1, 3-dithietane?NH3 complex: A rotational study reveals a N?σ-hole interaction [J]. Journal of Molecular Spectroscopy, 2021, 376(111409. [97]Bittner D M, Zaleski D P, Stephens S L, et al.The σ‐hole interaction between sulfur hexafluoride and ammonia characterised by broadband rotational spectroscopy[J].ChemPhysChem, 2015, 16(12):2630-2634 [98]Legon A C.Tetrel,pnictogen and chalcogen bonds identified in the gas phase before they had names: A systematic look at non-covalent interactions[J].Physical Chemistry Chemical Physics, 2017, 19(23):14884-14896 [99]Mani D, Arunan E.The X–C···Y (X = OF,Y = OSFClBrNP) ‘carbon bond’ and hydrophobic interactions[J].Physical Chemistry Chemical Physics, 2013, 15(34):14377-14383 [100]Caminati W, Maris A, Dell' Erba A, et al.Dynamical behavior and dipole–dipole interactions of tetrafluoromethane–water[J].Angewandte Chemie International Edition, 2006, 45(40):6711-6714 [101]Evangelisti L, Feng G, Gou Q, et al.Orientation of the water moiety in CF4–H2O [J]. Journal of Molecular Spectroscopy, 2012, 282(39-41. [102]Gou Q, Feng G, Evangelisti L, et al.Rotational spectrum of the tetrafluoromethane-ethylene oxide [J]. Journal of Molecular Spectroscopy, 2017, 335(84-87. [103]Maris A, Favero L B, Velino B, et al.Pyridine-CF4: A molecule with a rotating cap[J].The Journal of Physical Chemistry A, 2013, 117(44):11289-11292 [104]Heywood V L, Alford T P J, Roeleveld J J, et al.Observations of tetrel bonding between sp3-carbon and THF[J].Chemical Science, 2020, 11(20):5289-5293 [105]Gou Q, Feng G, Evangelisti L, et al.Lone-pair···π interaction: A rotational study of the chlorotrifluoroethylene–water adduct[J].Angewandte Chemie International Edition, 2013, 52(45):11888-11891 [106]Gou Q, Spada L, Geboes Y, et al.N lone-pair?π interaction: A rotational study of chlorotrifluoroethylene?ammonia[J].Physical Chemistry Chemical Physics, 2015, 17(12):7694-7698 [107]Spada L, Gou Q, Geboes Y, et al.Rotational study of dimethyl ether–chlorotrifluoroethylene: Lone pair···π interaction links the two subunits[J].The Journal of Physical Chemistry A, 2016, 120(27):4939-4943 [108]Evangelisti L, Brendel K, Mader H, et al.Rotational spectroscopy probes water flipping by full fluorination of benzene[J].Angewandte Chemie International Edition, 2017, 56(44):13699-13703 [109]Li W, Usabiaga I, Calabrese C, et al.Characterizing the lone pair?π–hole interaction in complexes of ammonia with perfluorinated arenes[J].Physical Chemistry Chemical Physics, 2021, 23(15):9121-9129 [110]Calabrese C, Gou Q, Maris A, et al.Probing the lone pair···π-hole interaction in perfluorinated heteroaromatic rings: the rotational spectrum of pentafluoropyridine·water[J].The Journal of Physical Chemistry Letters, 2016, 7(8):1513-1517 [111]Zhang J X, Sheong F K, Lin Z.Unravelling chemical interactions with principal interacting orbital analysis[J].Chemistry–A European Journal, 2018, 24(38):9639-9650 [112]Cheng W, Zheng Y, Herbers S, et al.Conformational equilibria of 2‐methoxypyridine???CO2: Cooperative and competitive tetrel and weak hydrogen bonds[J].ChemPhysChem, 2021, 22(2):154-159 [113]Fraser G T, Pine A S, Suenram R D, et al.Infrared and microwave spectra of OCO–HF and SCO–HF[J].The Journal of Chemical Physics, 1989, 90(3):1330-1336 [114]Altman R S, Marshall M D, Klemperer W.The microwave spectrum and molecular structure of CO2–HCl[J].The Journal of Chemical Physics, 1982, 77(9):4344-4349 [115]Rice J K, Lovas F J, Fraser G T, et al.Pulsed‐nozzle Fourier‐transform microwave investigation of the large‐amplitude motions in HBr–CO2[J].The Journal of Chemical Physics, 1995, 103(10):3877-3884 [116]Gao S, Obenchain D A, Lei J, et al.Tetrel bonds and conformational equilibria in the formamide-CO2 complex: a rotational study[J].Physical Chemistry Chemical Physics, 2019, 21(13):7016-7020 [117]Blake T A, Novick S E, Lovas F J, et al.Determination of the structure of CO2-H2CO[J].Journal of Molecular Spectroscopy, 1992, 154(1):72-82 [118]Vigorito A, Gou Q, Calabrese C, et al.How CO2 interacts with carboxylic acids: A rotational study of formic acid–CO2[J].ChemPhysChem, 2015, 16(14):2961-2967 [119]Bader R F W.A quantum theory of molecular structure and its applications[J].Chemical Reviews, 1991, 91(5):893-928 [120]Clark T.Interaction of radicals with σ-holes[J].The Journal of Physical Chemistry A, 2019, 123(15):3326-3333 [121]Ngar? M S, Xu Y, J?ger W.Rotational spectroscopic investigation of the weak interaction between CO and N2O[J].Journal of Molecular Spectroscopy, 1999, 197(2):244-253 [122]Peebles R A, Peebles S A, Kuczkowski R L, et al.Isotopic studies,structure and modeling of the nitrous oxide?acetylene complex[J].The Journal of Physical Chemistry A, 1999, 103(50):10813-10818 [123]Leung H O, Cashion W T, Duncan K K, et al.Nuclear quadrupole hyperfine structure in the microwave spectrum of HCl-N2O: Electric field gradient perturbation of N2O by HCl[J].The Journal of Chemical Physics, 2004, 121(1):237-247 [124]Leung H O, Ibidapo O M, Abru?a P I, et al.Nuclear hyperfine coupling interactions in the rotational spectra of the linear and bent isomers of HF–N2O[J].Journal of Molecular Spectroscopy, 2003, 222(1):3-14 [125]Zolandz D, Yaron D, Peterson K I, et al.Water in weak interactions: The structure of the water–nitrous oxide complex[J].The Journal of Chemical Physics, 1992, 97(5):2861-2868 [126]Fraser G T, Nelson Jr D D, Gerfen G J, et al.The rotational spectrum,barrier to internal rotation,and structure of NH3–N2O[J].The Journal of Chemical Physics, 1985, 83(11):5442-5449 [127]Blanco S, Lo?pez J C.Rotational characterization of an n→π* interaction in a pyridine–formaldehyde adduct[J].The journal of physical chemistry letters, 2018, 9(16):4632-4637 [128]Blanco S, Macario A, López J C.Pyridine–acetaldehyde,a molecular balance to explore the n→π* interaction[J].Physical Chemistry Chemical Physics, 2019, 21(37):20566-20570 [129]Wang H, Wang J, Chen J, et al.Competitive and cooperative n→π* and n→σ* interactions in benzaldehyde–formaldehyde: rotational characterization[J].Physical Chemistry Chemical Physics, 2021, 23(14):8778-8783 [130]Chen J, Wang H, Kisiel Z, et al.Hydrogen versus tetrel bonds in complexes of 3-oxetanone with water and formaldehyde [J]. Physical Chemistry Chemical Physics, 2021, DOI: 10.1039/D1CP00239B). [131]Pérez C, Neill J L, Muckle M T, et al.Water–water and water–solute interactions in microsolvated organic complexes[J].Angewandte Chemie, 2015, 127(3):993-996 [132]Li W, Quesada-Moreno M M, Pinacho P, et al.Unlocking the water trimer loop: Isotopic study of benzophenone-(H2O)1–3 clusters with rotational spectroscopy[J].Angewandte Chemie International Edition, 2021, 60(10):5323-5330 [133]Li W, Spada L, Tasinato N, et al.Theory meets experiment for noncovalent complexes: The puzzling case of pnicogen Interactions[J].Angewandte Chemie - International Edition, 2018, 57(42):13853-13857 [134]Aakeroy C B, Bryce D L, Desiraju G R, et al.Definition of the chalcogen bond (IUPAC Recommendations 2019)[J].Pure and Applied Chemistry, 2019, 91(11):1889-1892 [135]Matsumura K, Lovas F, Suenram R D.The microwave spectrum and structure of the H2O–SO2 complex [J]. The Journal of Chemical Physics, 1989, 91(5887. [136]Sun L, Tan X Q, Oh J J, et al.The microwave spectrum and structure of the methanol?SO2 complex[J].The Journal of Chemical Physics, 1995, 103(15):6440-6449 [137]Oh J J, LaBarge M S, Matos J, et al.Structure of the trimethylamine-sulfur dioxide complex[J].Journal of the American Chemical Society, 1991, 113(13):4732-4738 [138]Lovas F J, Sprague M K.Microwave rotational spectral study of SO2-CO [J]. Journal of Molecular Spectroscopy, 2015, 316(49-53. [139]Andrews A M, Hillig K W, Kuczkowski R L, et al.Microwave spectrum,structure,dipole moment,and deuterium nuclear quadrupole coupling constants of the acetylene–sulfur dioxide van der Waals complex[J].The Journal of Chemical Physics, 1991, 94(11):6947-6955 [140]Tan X Q, Xu L W, Tubergen M J, et al.The microwave spectrum,structure,and large amplitude motions of the methylacetylene?SO2 complex[J].The Journal of Chemical Physics, 1994, 101(8):6512-6522 [141]Xu L W, Kuczkowski R L.Structure of the propene?sulfur dioxide complex[J].The Journal of Chemical Physics, 1994, 100(1):15-22 [142]Xu L W, Taleb-Bendiab A, Nemes L, et al.The microwave spectrum,structure,and dipole moment of the butadiene-sulfur dioxide complex[J].Journal of the American Chemical Society, 1993, 115(13):5723-5728 [143]Taleb‐Bendiab A, Hillig K W, Kuczkowski R L.Microwave spectrum of benzene?SO2: Barrier to internal rotation,structure,and dipole moment[J].The Journal of Chemical Physics, 1992, 97(5):2996-3006 [144]Taleb‐Bendiab A, Hillig K W, Kuczkowski R L.Microwave spectrum of toluene?SO2: Structure,barrier to internal rotation,and dipole moment[J].The Journal of Chemical Physics, 1993, 98(5):3627-3636 [145]Oh J J, Xu L-W, Taleb-Bendiab A, et al.The microwave spectrum and structure of the furan· sulfur dioxide complex[J].Journal of Molecular Spectroscopy, 1992, 153(1-2):497-510 [146]Obenchain D A, Spada L, Alessandrini S, et al.Unveiling the sulfur–sulfur bridge: accurate structural and energetic characterization of a homochalcogen intermolecular bond[J].Angewandte Chemie International Edition, 2018, 57(48):15822-15826 [147]Mantina M, Chamberlin A C, Valero R, et al.Consistent van der Waals radii for the whole main group[J].The Journal of Physical Chemistry A, 2009, 113(19):5806-5812 [148]Huff A K, Ward R M, Leopold K R.Microwave spectrum and structure of the SO3?SO2 weakly bound complex [J]. Journal of Molecular Spectroscopy, 2020, 371(111327. [149]Hunt S W, Leopold K R.Molecular and electronic structure of C5H5N?SO3: Correlation of ground state physical properties with orbital energy gaps in partially bound Lewis acid?base complexes[J].The Journal of Physical Chemistry A, 2001, 105(22):5498-5506 [150]Burns W A, Phillips J A, Canagaratna M, et al.Partially formed bonds In HCN?SO3 and CH3CN?SO3: a comparison between donor? acceptor complexes of SO3 and BF3[J].The Journal of Physical Chemistry A, 1999, 103(37):7445-7453 [151]Sedo G, Leopold K R.Microwave spectrum of (CH3)3CCN–SO3[J].Journal of Molecular Spectroscopy, 2010, 262(2):135-138 [152]Fiacco D L, Toro A, Leopold K R.Structure,bonding,and dipole moment of (CH3)3N?SO3A microwave study[J].Inorganic Chemistry, 2000, 39(1):37-43 [153]Blanco S, Macario A, López J C.The structure of isolated thalidomide as reference for its chirality-dependent biological activity: a laser-ablation rotational study[J].Physical Chemistry Chemical Physics, 2021, 23(24):13705-13713 [154]Lee K L K, McCarthy M.Study of benzene fragmentation,isomerization,and growth using microwave spectroscopy[J].The journal of physical chemistry letters, 2019, 10(10):2408-2413 [155]Bloemink H I, Legon A C.The complex H3N···Br2 characterized in the gas phase by rotational spectroscopy[J].The Journal of Chemical Physics, 1995, 103(3):876-882 |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[13] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
[14] | YU Wei, ZHOU Zhuoyan, SUN Zhongmou, ZHANG Xinglong, LIU Yuzhu, . Real-time detection of the genus Rosa L. using LIBS technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 494-501. |
[15] | DING Bokun, SHAO Ligang, WANG Kunyang, CHEN Jiajin, WANG Guishi, LIU Kun, MEI Jiaoxu, TAN Tu, GAO Xiaoming, ∗. Research on real-time detection technology of dissolved gas in seawater based on off-axis integrating cavity [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||