量子电子学报 ›› 2021, Vol. 38 ›› Issue (3): 332-340.doi: 10.3969/j.issn.1007-5461.2021.03.009
陈梦涵, 郭躬德, 林崧∗
收稿日期:
2021-01-04
修回日期:
2021-03-17
出版日期:
2021-05-28
发布日期:
2021-05-28
通讯作者:
E-mail: lins95@fjnu.edu.cn
作者简介:
陈梦涵( 1997 - ), 女, 安徽人, 研究生, 主要从事量子机器学习方面的研究。E-mail: 1446514387@qq.com
基金资助:
CHEN Menghan, GUO Gongde, LIN Song∗
Received:
2021-01-04
Revised:
2021-03-17
Published:
2021-05-28
Online:
2021-05-28
摘要: 利用量子汉明距离提出一个基于内容的量子推荐算法。该算法利用量子力学特性对用户观看的历史电影 属性并行求和, 从而有效计算出用户的偏好属性, 然后基于汉明距离得到新电影属性与其偏好属性的相似度, 并快 速查找到相似度高的新电影, 完成推荐任务。分析表明所提出算法与经典算法相比在运行时间上有指数级加速。
中图分类号:
陈梦涵, 郭躬德, 林崧∗. 基于汉明距离的量子推荐算法[J]. 量子电子学报, 2021, 38(3): 332-340.
CHEN Menghan, GUO Gongde, LIN Song∗. Quantum recommendation algorithm based on Hamming distance[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 332-340.
[1] | Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning [J]. Contemporary Physics, 2015, 56(2): |
17 | 2-185. |
[2] | Dunjko V, Briegel H J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress [J]. |
Reports on Progress in Physics, 2018, 81(7): 074001. | |
[3] | Dai J, Li Z Q, Pan S H, et al. Deutsch-Jozsa algorithm realization based on IBM Q [J]. Chinese Journal of Quantum Electronics, |
20 | 20, 37(2): 202-209. |
戴娟, 李志强, 潘苏含, 等. 基于IBM Q 的Deutsch-Jozsa 算法实现[J]. 量子电子学报, 2020, 37(2): 202-209. | |
[4] | Motta M, Sun C, Tan A T K, et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary |
time evolution [J]. Nature Physics, 2020, 16(2): 205-210. | |
[5] | Cao D. Cluster states quantum fuzzy hashing and covert information search [J]. Chinese Journal of Quantum Electronics, 2015, |
32 | (1): 58-68. |
[6] | Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM |
Review, 1999, 41(2): 303-332. | |
[7] | Grover L K. Quantum mechanics helps in serching for a needle in a haystack [J]. Physical Review Letters, 1997, 79(2): 325-328. |
[8] | Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning [J]. Nature, 2017, 549(7671): 195-202. |
[9] | Liu N N, Rebentrost P. Quantum machine learning for quantum anomaly detection [J]. Physical Review A, 2018, 97(4): 042315. |
[10] | Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, |
10 | 3(15): 150502. |
[11] | Wossnig L, Zhao Z K, Prakash A. A quantum linear system algorithm for dense matrices [J]. Physical Review Letters, 2017, |
12 | 0(5): 050502. |
[12] | Wang G M. Quantum algorithm for linear regression [J]. Physical Review A, 2017, 96(1): 012335. |
[13] | Zhang D B, Xue Z Y, Zhu S L, et al. Realizing quantum linear regression with auxiliary qumodes [J]. Physical Review A, 2019, |
99 | (1): 012331. |
[14] | Lin J, Bao W S, Zhang S, et al. An improved quantum principal component analysis algorithm based on the quantum singular |
threshold method [J]. Physics Letters A, 2019, 383(24): 2862-2868. | |
[15] | Fan D C, Song Z L, Jon S, et al. An improved quantum clustering algorithm with weighted distance based on PSO and research |
on the prediction of electrical power demand [J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 2359-2367. | |
[16] | Guo G D, Yu K,Wang H, et al. Quantum hierarchical agglomerative clustering based on one dimension discrete quantum walk |
with single-point phase defects [J]. Computers, Materials & Continua, 2020, 65(2): 1397-1409. | |
[17] | Yu K, Guo G D, Li J, et al. Quantum algorithms for similarity measurement based on Euclidean distance [J]. International |
Journal of Theoretical Physics, 2020, 59(10): 3134-3144. | |
[18] | Xu Y Z, Guo G D, Cai B B, et al. Quantum clustering algorithm based on one-dimensional three-state quantum walk [J]. |
Computer Science, 2016, 43(3): 80-83. | |
徐永振, 郭躬德, 蔡彬彬, 等. 基于一维三态量子游走的量子聚类算法[J]. 计算机科学, 2016, 43(3): 80-83. | |
[19] | Chen S L, Huang C H. Construction of continuous-variable coherent state quantum neural network model [J]. Chinese Journal |
of Quantum Electronics, 2017, 34(4): 467-472. | |
陈珊琳, 黄春晖. 连续变量相干态量子神经网络模型的构建[J]. 量子电子学报, 2017, 34(4): 467-472. | |
[20] | Cong I, Choi S, Lukin M D. Quantum convolutional neural networks [J]. Nature Physics, 2019, 15(12): 1273-1278. |
[21] | Chen Y, Li X, Liu J, et al. Recommendation system for adaptive learning [J]. Applied Psychological Measurement, 2018, 42(1): |
24 | -41. |
[22] | Wei J, He J, Chen K, et al. Collaborative filtering and deep learning based recommendation system for cold start items [J]. |
Expert Systems With Applications, 2017, 69(9): 29-39. | |
[23] | Tarus J K, Niu Z D, Mustafa G M, et al. Knowledge-based recommendation: A review of ontology-based recommender |
systems for e-learning [J]. Artificial Intelligence Review, 2018, 50(1): 21-48. | |
[24] | Sawerwain M, Wr´oblewski M. Recommendation systems with the quantum k-NN and Grover algorithms for data processing |
[J] | International Journal of Applied Mathematics and Computer Science, 2019, 29(1): 139-150. |
[25] | Ruan Y, Xue X L, Liu H, et al. Quantum algorithm for K-nearest neighbors classification based on the metric of Hamming |
distance [J]. International Journal of Theoretical Physics, 2017, 56(11): 3496-3507. | |
[26] | Linke N M, Maslov D, Roetteler M, et al. Experimental comparison of two quantum computing architectures [J]. PNAS, 2017, |
11 | 4(13): 3305-3310. |
[27] | Zulehner A, Paler A, Wille R, et al. An efficient methodology for mapping quantum circuits to the IBM QX architectures [J]. |
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(7): 1226-1236. | |
[28] | Kaye P. Reversible addition circuit using one ancillary bit with application to quantum computing [J]. arXiv: quant-ph/0408173, |
2004. | |
[29] | Bang J, Dutta A, Lee S, et al. Optimal usage of quantum random access memory in quantum machine learning [J]. Physical |
Review A, 2019, 99(1): 012326. | |
[30] | Brassard G, Hoyer P, Mosca M. Quantum amplitude amplification and estimation [J]. arXiv: quant-ph/0005055, 2000. |
[31] | Rastegin A E. On the role of dealing with quantum coherence in amplitude amplification [J]. Quantum Information Processing, |
20 | 18, 17(7): 179-194. |
[32] | Yu C H, Gao F,Wang Q L, et al. Quantum algorithm for association rules mining [J]. Physical Review A, 2016, 94(4): 042311. |
[1] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[2] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[3] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[4] | 吴希, 李志强∗. 基于 Cirq 的Grover 搜索算法的电路实现[J]. 量子电子学报, 2022, 39(3): 431-438. |
[5] | 戴娟∗, 李志强, 杨冬晗. 基于 Cirq 的Deutsch-Jozsa 电路综合算法[J]. 量子电子学报, 2022, 39(3): 439-445. |
[6] | 徐 凯♯, 曹 洹, ♯, 张 超∗, 胡晓敏, 黄运锋∗, 柳必恒, 李传锋∗. 光子轨道角动量量子态传输研究进展[J]. 量子电子学报, 2022, 39(1): 3-31. |
[7] | 王纺翔, 陈 巍, ∗. 综述: 基于轨道角动量光子态的 高维量子密钥分发[J]. 量子电子学报, 2022, 39(1): 64-80. |
[8] | 茹世浩, 王 啸, 王云龙, 王斐然, 刘瑞丰, 张 沛, 李福利, ∗. 光子轨道角动量的量子操控与应用[J]. 量子电子学报, 2022, 39(1): 96-109. |
[9] | 常泓 吴怡婷 林崧. 基于 Bell 态的量子安全多方求和[J]. 量子电子学报, 2021, 38(6): 830-837. |
[10] | 唐世彪∗, 程 节, 栗 帅. 量子密钥分发产品随机数芯片阵列方案研究[J]. 量子电子学报, 2021, 38(4): 468-476. |
[11] | 范宇腾, 索 磊 , 张春辉, 陈家明, 王 琴, ∗. 基于线性光学元件的被动式诱骗态量子数字签名方案[J]. 量子电子学报, 2021, 38(4): 485-495. |
[12] | 虞味 周媛媛 周学军. 基于弱相干态光源的相位匹配诱骗态量子密钥分配方案[J]. 量子电子学报, 2021, 38(1): 37-44. |
[13] | 郭梦琪, 巩龙延∗. I_{3322}不等式的量子违背研究[J]. 量子电子学报, 2021, 38(1): 50-56. |
[14] | 唐世彪∗, 程节, 栗帅. 高速QKD系统的随机数源及实时自检方案研究[J]. 量子电子学报, 2021, 38(1): 86-93. |
[15] | 朱孟正, 赵春然, 公丕锋, 叶 柳. 基于坐标系旋转实现对实数态克隆的优化[J]. 量子电子学报, 2020, 37(3): 337-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||