量子电子学报 ›› 2021, Vol. 38 ›› Issue (3): 332-340.doi: 10.3969/j.issn.1007-5461.2021.03.009

• 量子光学 • 上一篇    下一篇

基于汉明距离的量子推荐算法

陈梦涵, 郭躬德, 林崧∗   


  1. 福建师范大学数学与信息学院, 福建福州350007
  • 收稿日期:2021-01-04 修回日期:2021-03-17 出版日期:2021-05-28 发布日期:2021-05-28
  • 通讯作者: E-mail: lins95@fjnu.edu.cn
  • 作者简介:陈梦涵( 1997 - ), 女, 安徽人, 研究生, 主要从事量子机器学习方面的研究。E-mail: 1446514387@qq.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 61772134, 61976053), Program for New Century Excellent Talents in Fujian Province University (福建省高等学校新世纪优秀人才支持计划), Natural Science Foundation of Fujian Province of China (福 建省自然科学基金, 2018J01776)

Quantum recommendation algorithm based on Hamming distance

CHEN Menghan, GUO Gongde, LIN Song∗   

  1. School of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China
  • Received:2021-01-04 Revised:2021-03-17 Published:2021-05-28 Online:2021-05-28

摘要: 利用量子汉明距离提出一个基于内容的量子推荐算法。该算法利用量子力学特性对用户观看的历史电影 属性并行求和, 从而有效计算出用户的偏好属性, 然后基于汉明距离得到新电影属性与其偏好属性的相似度, 并快 速查找到相似度高的新电影, 完成推荐任务。分析表明所提出算法与经典算法相比在运行时间上有指数级加速。

关键词: 量子信息, 量子推荐算法, 量子汉明距离, 量子并行性, 幅度放大

Abstract: A content-based quantum recommendation algorithm based on quantum Hamming distance is proposed. In the proposed algorithm, quantum mechanical properties are utilized to sum up the attributes of historical movies watched by users parallelly, so that the favorite attributes of the users can be calculated efficiently. Then, the quantum Hamming distance between the new movies’ attributes and the favorite attributes is derived, which represents the similarity of them. Finally, one new movie with the highest similarity is obtained, which means the task of recommendation is achieved. Analysis shows that the proposed algorithm is exponentially faster in the runtime than the classical counterpart.

Key words: quantum information, quantum recommendation algorithm, quantum Hamming distance; quantum parallelism, amplitude amplification

中图分类号: