[1] Zhang J C, Yu W X, Xiao F J, Zhao J L. Tuning optical force of dielectric/metal core-shell placed above Au film[J]. Acta Phys. Sin., 2020, 69(18): 184206.张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控[J]. 物理学报, 2020, 69(18): 184206.[2] Zhang Q Q, Chen B, Xing L Z. Finite Element Analysis of Photothermal Properties of SiO2@Au Core-Shell Nanoparticle[J]. Chinese Journal of Lasers, 2021, 48(9): 0907001. 张倩倩, 陈斌, 邢林庄. SiO2@Au核壳结构纳米颗粒光热性质的有限元分析[J]. 中国激光, 2021, 48(9): 0907001. [3] Fan Y, Liu L, Zhang F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures [J]. Nanotoday, 2019, 25: 68-84.[4] Chaudhuri R G, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.[5] Cui T, Mukherjee S, Sudeep P M, Colas G, Najafi F, Tam J, Ajayan P M, Singh C V, Sun Y, Filleter T. Fatigue of graphene[J]. Nature Materials 2020, 19, 405-411.[6] Thurmond K B, Kowalewski T, Wooley K L. Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles[J]. Journal of the American Chemical Society, 1996, 118(30): 7239-7240.[7] Lawal A T. Graphene-based nano composites and their applications. A review [J]. Biosensors and Bioelectronics, 2019, 141: 111384.[8] Liu L L, Wang M, Jiao L P, Wu T, Xia F, Liu M J, Kong W J, Dong L F, Yun M J, Sensitivity enhancement of a graphene-barium titanate-based surface plasmon resonance biosensor with an Ag-Au bimetallic structure in the visible region[J]. Journal of the Optical Society of America B, 2019, 36(4): 1108-1116.[9] Sreejith S, Joseph J, Nguyen K T, Murukeshan V M, Woh Lye S, Zhao Y L. Graphene Oxide Wrapping of Gold-Silica Core-Shell Nanohybrids for Photoacoustic Signal Generation and Bimodal Imaging [J]. ChemNanoMat, 2015, 1: 39.[10] Guo C Y, Wang D D, Mu C L. Progress on Optical Fiber Sensors Based on Graphene/Graphene Oxide [J]. Laser & Optoelectronics Progress, 2020, 57(15):150003.郭晨瑜,王豆豆,穆长龙.基于石墨烯/氧化石墨烯的光纤传感器研究进展[J]. 激光与光电子学进展, 2020, 57(15):150003. [11] Sonali Das, Deepak Pandey, Jayan Thomas, Tania Roy. The Role of Graphene and Other 2D Materials in Solar Photovoltaics[J]. Advanced Materials 2019, 31:1802722.[12] Feng J, Santamouris M. Numerical techniques for electromagnetic simulation of daytime radiative cooling: A review[J]. AIMS Materials Science, 2019, 6(6): 1049-1064. [13] Dakhlaoui H, Belhadj W, Wong B M. Quantum tunneling mechanisms in monolayer graphene modulated by multiple electrostatic barriers [J]. Results in Physics, 2021, 26: 104403.[14] Cao P C, Yang X B, Wang S Q, Huang Y., Wang N, Deng D, Liu C T. Ultrastrong graphene absorption induced by one-dimensional parity-time symmetric photonic crystal[J]. IEEE Photonics Journal, 2017, 9(1): 1-9.[15] Xiang Y J, Dai X Y, Guo J, Zhang H, Wen S, Tang D. Critical coupling with graphene-based hyperbolic metamaterials[J]. Scientific reports, 2014, 4(1): 1-7.[16] Moroz A. A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere[J]. Annals of Physics, 2005, 315(2): 352-418.[17] Abou-Hatab S. Radiative and non-radiative decay pathways of n-cyanoindole fluorescent probes in aqueous solution[J]. Biophysical Journal, 2022, 121(3): 528a.[18] Hanson G W, Forati E, Linz W, Yakovlev A B. Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support[J]. Physical Review B, 2012, 86(23): 235440.[19] Huidobro P A, Nikitin A Y, González-Ballestero C, Martín-Moreno L, García-Vidal F J. Superradiance mediated by graphene surface plasmons[J]. Physical Review B, 2012, 85(15): 155438. [20] Liu C, Lv J, Liu Z, Zheng S, Liu Q, Sun T, Chu P K. Theoretical assessment of localized surface plasmon resonance properties of Au-interlayer-Ag multilayered nanoshells[J]. Plasmonics, 2016, 11(6): 1589-1595. |