[1] Zhang Z Y, Wang L N, Hu H F*, et al. A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film[J]. Chinese Physics B, 2013, 22(10):104213 [2] Li J W, Wang C, Bing P B, et al. Theoretical Study on Circular Dichroism Spectral Sensing Properties of Chiral Plasmonic Metasurface [J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257-265. (in Chinese). 李继武,王春,邴丕彬,等. 手性等离激元超表面圆二向色性光谱传感特性理论研究 [J]. 量子电子学报,2020, 37(3): 257-265. [3] Fang N, Lee H, Sun C, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens[J]. Science, 2005, 308(5721):534-537. [4] Wang Z, Hu B, Niu Z, et al. Terahertz surface plasmon polaritons travelling on laser-induced porous graphene[J]. Applied physics letters, 2022, 120(18): 181701. [5] Ren Z, Chen L, Liu X, et al. Preparation, characterization and simulation of Al@SiO2 nanoparticle composite films with infrared-visible stealth[J]. Infrared Physics & Technology, 2020, 111: 103472. [6] Bell A T. The Impact of Nanoscience on Heterogeneous Catalysis[J]. Science, 2003, 299(5613):1688-1691. [7] Hou W, Cronin S B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis[J]. Advanced Functional Materials, 2013, 23(13): 1612-1619. [8] Awal M A, Ahmed Z, Talukder M A. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry[J]. Journal of Applied Physics, 2015, 117(6): 063109. [9] Guo L, Sun Z*,Cooperative optical trapping in asymmetric plasmon nanocavity arrays[J]. Optics Express, 2015, 23(24): 31324-31333. [10] Wei H, Li Z, Tian X, Wang Z, et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks[J]. Nano Letter, 2011, 11(2): 471-475. [11] Ma R M, Ota S, Li Y, Yang S, Zhang X*. Explosives detection in a lasing plasmon nanocavity [J]. Nature Nanotechnology, 2014, 9(8): 600-604. [12] Genevet P, Wintz D, Ambrosio A, et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial[J]. Nature Nanotechnology, 2015, 10(9): 804-809. [13] Wang S M, Cheng Q Q, Gong Y X, et al. A 14×14μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide [J]. Nature Communications, 2016, 7: 11490. [14] Zhang Y, Meng Q S, Zhang L, Luo Y, et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity[J]. Nature Communications, 2017, 8: 15225. [15] Zhang H C, Cui T J*, Luo Y*, et al. Active digital spoof plasmonics[J]. National Science Review, 2019, 7(2): 261-269. [16] Zhang S, Wei H, Bao K, et al. Chiral surface plasmon polaritons on metallic nanowires[J]. Physical review letters, 2011, 107(9): 096801. [17] De Souza J L, Da Costa K Q, Dmitriev V, et al. Broadband Dipole-Loop Combined Nanoantenna Fed by Two-Wire Optical Transmission Line[J]. International Journal of Antennas and Propagation,2017, 2017(1): 4903747. [18] Wei, H., Zhang, S., Tian, X., Xu, H. Highly tunable propagating surface plasmons on supported silver nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(12): 4494-4499. [19] Sun M, Kik P G. Light trapping transparent electrodes with wide-angle response[J]. Optics Express, 2021, 29(16): 24989-24999. [20] Yuan Z, Gao S*. Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons[J]. Physical review B, 2008, 78(23): 1879-1882. [21] Yan J,Yuan Z, Gao S*. End and central plasmon resonances in linear atomic chains[J]. Physical review letters,2007, 98(21): 216602-216605. [22] Chen J, Lai L Q, Yang X, et al. On the existence of a local dipolar plasmon mode in doped small gold atomic arrays[J]. Physical review B, 2020, 101(8): 085421. [23] Chen J, Lai L Q, Quan J, et al. Substrate polarization effects on the plasmon excitations of small Na atomic chains on Si surfaces[J]. Physical review B, 2021, 103(12): 125417. [24] Liu D D, Zhang H*. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains[J]. Chinese Physics B, 2011, 09(20): 097105. [25] Liu D D, Zhang H*, Chen X L. Plasmon resonances and electron transport in linear sodium atomic chains[J]. Journal of Applied Physics, 2012, 112(5): 053707. [26] Yin H, Zhang H*. Collectivity of plasmon excitations in small sodium clusters with planar structure[J]. Physica B, 2012, 407(3): 416-420. [27] Wang B J, Xu Y, Ke S H*. Plasmon excitations in sodium atomic planes: A time-dependent density functional theory study[J]. Journal of Chemical Physics, 2012, 137(5):054101. [28] Wang B J, Xu Y, Ke S H*. Time-dependent density functional theory studies of plasmons in parallel double sodium atomic chains[J]. Advanced Materials Research, 2013, 602: 883-886. [29] Xue H J*, Hao D P, Zhang M, et al. Plasmon excitations in the dimers formed by atom chains[J]. Physica E, 2017, 86: 292-296. [30] Reng-lai Wu, Jun Quan*, Mengtao Sun*, et al. Influence of the external field on the excitation properties of plasmon in linear atomic chain[J]. Scientific Reports, 2018, 8: 12563. [31] Reng-lai Wu, Jun Quan, Mengtao Sun*, et al. Transformation from Quantum to Classical Mode---the Size Effect of Plasmon in 2D Atomic Cluster System[J]. Scientific Reports, 2019, 9: 6641. |