量子电子学报 ›› 2025, Vol. 42 ›› Issue (4): 504-515.doi: 10.3969/j.issn.1007-5461.2025.04.006

• “量子精密测量与应用” 专辑 • 上一篇    下一篇

原子剪切干涉仪中探测系统倾角测量及其引入误差评估

1 中国地质大学 (武汉) 数学与物理学院, 湖北 武汉 430074; 2 中国科学院精密测量科学与技术创新研究院, 波谱与原子分子物理国家重点实验室, 湖北 武汉 430071; 3 中国科学院大学, 北京 100049; 4 合肥国家实验室, 安徽 合肥 230088   

  1. 1. 中国科学院精密测量科学与技术创新研究院
    2. 中国科学院武汉物理与数学研究所
    3. 中国地质大学(武汉)
  • 收稿日期:2025-02-17 修回日期:2025-04-19 出版日期:2025-07-28 发布日期:2025-07-28
  • 通讯作者: E-mail: zhangbaocheng@cug.edu.cn E-mail:E-mail: zhangbaocheng@cug.edu.cn
  • 作者简介:庞宇轩 ( 2000 - ), 甘肃嘉峪关人, 研究生, 主要从事原子干涉仪探测方面的研究。E-mail: dszdsxc17111@outlook.com
  • 基金资助:
    湖北省科技重大专项 (ZDZX2022000001), 湖北省自然科学基金 (2022CFA096), 国家自然科学基金 (12174403, 12304547, 12304549, W2412045)

Measurement of detection system tilt and evaluation of tilt‐induced errors in atomic shear interferometer

PANG Yuxuan 1 , ZHOU Lu 2,3 , YAN Sitong 2 , JIANG Junjie 2,3 , HE Chuan 2 , XU Rundong 2 , ZHANG Baocheng 1*, ZHOU Lin 2,4*, WANG Jin 2,4 , ZHAN Mingsheng 2,4   

  1. 1 School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China; 2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Hefei National Laboratory, Hefei 230088, China
  • Received:2025-02-17 Revised:2025-04-19 Published:2025-07-28 Online:2025-07-28

摘要: 原子剪切干涉技术是近年来快速发展起来的一种原子物质波干涉测量技术, 由于具有高精度、实时测量等 特点, 因此在基础物理和应用技术等领域逐渐受到关注。在利用原子剪切干涉仪进行高精度测量时, 探测系统的倾 角是系统误差的重要来源之一。围绕这一问题, 本文首先进行了理论分析, 评估了探测系统倾角对原子干涉仪测量 性能的影响; 随后, 分别采用铅垂线测量法和原子干涉相移测量法对处于系统安装和测量阶段的原子剪切干涉仪进 行了倾角测量。在铅垂线测量法中, 其倾角测量分辨率为0.6 mrad, 考虑各类误差的影响, 整体测量精度在1~2 mrad 左右。在原子干涉相移测量法中, 针对不同类型的原子剪切干涉仪, 分别采用不同的原子干涉相移参考体系对探测 系统的倾角进行了测量: 针对用于重力、重力梯度、转动测量的单组分原子干涉仪, 提出并实现了同步双内态探测的 原子干涉相移测量法, 其倾角测量分辨率为0.3 mrad, 可使倾角对重力测量的影响降低到10−10 g水平; 针对用于等效 原理检验的双组分原子干涉仪, 提出并实现了可进行实时监测的交替探测原子干涉相移测量法, 其倾角测量分辨率 为0.3 mrad , 可满足10−13 g水平的差分重力测量分辨率需求。本文采用的研究方法将为解决原子剪切干涉仪中探测 系统倾角导致的系统误差问题提供重要参考。

关键词: 量子光学, 原子剪切干涉仪, 探测系统倾角测量, 原子干涉相移测量法

Abstract: Atomic shear interferometry is an emerging matter wave interferometric technique developed in recent years, which has demonstrated growing applications in fundamental physics and practical metrology due to its exceptional precision and real-time measurement capabilities. However, the tilt of the detection system represents one of the critical sources of systematic errors in high-precision atomic shear interferometric measurements. To address this challenge, we first make a comprehensive theoretical analysis and quantitative evaluation of the impact of detection system tilt on interferometric measurements, and then experimentally implement a two-stage strategy for tilt measurement: using the plumb line method during system installation and using the atomic interferometric phase shift method during operational measurements. Regarding to the plumb line method, the tilt measurement resolution is 0.6 mrad, and the overall measurement accuracy is approximately 1–2 mrad considering the influence of various types of errors. Regarding to the atomic interferometric phase shift method, we develop specialized phase shift reference systems to measure system tilts for different interferometer configurations. Specifically, for single-species atom interferometers designed for gravity, gravity gradient, and rotation measurements, we propose and implement the atomic interferometric phase shift method with simultaneous dual-internal-state detection, achieving a tilt measurement resolution of 0.3 mrad and reducing tilt-induced errors in gravity measurements to the level of 10−10 g. For dual-species atom interferometers used in equivalence principle tests, we develop an alternative detection atomic interferometric phase shift method for real-time monitoring, achieving a tilt measurement resolution of 0.3 mrad, and satisfying the differential gravity measurement requirements at the 10−13 g level. The research methods used in this paper will provide references for solving the problems of systematic errors caused by the tilt of the detection system in atomic shear interferometers.

Key words: quantum optics, atomic shear interferometer, tilt measurement of detection system, atomic interferometric phase shift measurement method

中图分类号: