量子电子学报 ›› 2025, Vol. 42 ›› Issue (4): 490-503.doi: 10.3969/j.issn.1007-5461.2025.04.005

• “量子精密测量与应用” 专辑 • 上一篇    下一篇

基于里德堡原子单体和多体系统的电场测量

宋晓云 1, 陈雪花 1,2,3, 贾春阳 1,2,3, 丛 楠 1, 杨仁福 1*   

  1. 1 北京量子信息科学研究院, 北京 100193; 2 中国科学院物理研究所, 北京 100190; 3 中国科学院大学, 北京 100049
  • 收稿日期:2024-12-30 修回日期:2025-03-19 出版日期:2025-07-28 发布日期:2025-07-28
  • 通讯作者: E-mail: yangrf@baqis.ac.cn E-mail:E-mail: yangrf@baqis.ac.cn
  • 作者简介:宋晓云 ( 1996 - ), 女, 山东日照人, 研究生, 主要从事量子传感技术及其应用研究。E-mail: sxygryx7301@163.com
  • 基金资助:
    智能电网国家科技重大专项 (2024ZD0803300), 北京市自然科学基金重点研究专题项目 (Z240006)

Electric field measurements based on Rydberg atomic single⁃body and many⁃body systems

SONG Xiaoyun 1 , CHEN Xuehua 1,2,3 , JIA Chunyang 1,2,3 , CONG Nan 1 , YANG Renfu 1*   

  1. 1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-12-30 Revised:2025-03-19 Published:2025-07-28 Online:2025-07-28

摘要: 基于里德堡原子的电场测量, 凭借其高灵敏度、大动态范围、宽频谱覆盖等特性, 在电磁计量、频谱感知、雷 电监测等领域具有广泛的应用前景, 并有望成为下一代电磁信号接收的重要手段。随着理论和实验的不断发展, 基 于里德堡原子的电场测量灵敏度正逐渐逼近量子噪声极限。本文概述了里德堡原子电场测量原理,综述了近年来里 德堡原子的单体和多体电场测量方面的研究进展。到目前为止, 研究人员在电磁诱导透明和Autler-Townes (AT) 分 裂的基础上不断优化电场测量技术, 采用零差法、超外差技术、重泵浦以及六波混频等方案, 将单体系统下的电场测 量灵敏度提高到3.98 nV⋅cm−1 ⋅Hz−1/2 , 相位测量灵敏度达到2 mrad。除单体系统外, 基于里德堡原子的多体系统在相 变点的临界性也被应用于电场测量, 其测量灵敏度用Fisher信息表示, 最新研究表明采用腔增强光学双稳态、随机噪 声共振增强等方法可将基于多体的电场测量灵敏度提高6.6 dB, 且对外界噪声具有鲁棒性。

关键词: 量子光学, 电场测量, 电磁诱导透明, 里德堡原子, 多体系统

Abstract: The electric field measurement based on Rydberg atoms, due to its high sensitivity, large dynamic range, and broad spectral coverage, has broad application prospects in fields such as information communication, spectrum detection, and meteorological warning, and is expected to become one of the key technologies for next-generation electromagnetic spectrum sensing. With ongoing advancements in both theory and experiment, the sensitivity of electric field measurement based on Rydberg atoms is gradually approaching the quantum projection noise limit. This article outlines the principles of electric field measurement based on Rydberg atoms, and reviews the recent progress in both single-body and many-body electric field measurement based on Rydberg atoms. So far, researchers have continually optimized electric field measurement techniques based on electromagnetically induced transparency and Autler-Townes (AT) splitting, employing methods such as the homodyne detection technique, superheterodyne technique, repumping, and six-wave mixing. These approaches have improved the electric field measurement sensitivity of single-body systems to 3.98 nV·cm−1 ·Hz−1/2 , and the phase measurement sensitivity to 2 mrad. In addition to single-body systems, many-body systems based on Rydberg atoms have also been widely applied in electric field measurements by using their criticality at the phase trasition point, and the measurement sensitivity in many-body systems is expressed using Fisher information. Techniques such as cavity-enhanced optical bistability and stochastic resonance enhancement have been employed in many-body electric field measurement, and recent studies demonstrate that a 6.6 dB improvement in electric field measurement sensitivity, as well as robust resistance to external noise, has been achieved.

Key words: quantum optics, electric field measurement, electromagnetically induced transparency, Rydberg atom, many-body systems

中图分类号: