量子电子学报 ›› 2025, Vol. 42 ›› Issue (4): 546-555.doi: 10.3969/j.issn.1007-5461.2025.04.010

• “量子精密测量与应用” 专辑 • 上一篇    下一篇

基于里德堡原子的超外差宽带频谱测量设计与实现 (特邀)

韩顺利 *, 刘贵祥 , 柴继旺 , 张映昀 , 柳 扬   

  1. 中国电子科技集团公司第四十一研究所电子测试技术重点实验室, 山东 青岛 266555
  • 收稿日期:2024-12-31 修回日期:2025-02-20 出版日期:2025-07-28 发布日期:2025-07-28
  • 通讯作者: E-mail: hsl@ei41.com E-mail:E-mail: hsl@ei41.com
  • 作者简介:韩顺利 ( 1982 - ), 山东日照人, 博士, 研究员, 主要从事电子测量仪器研发以及量子光学、智能测试、太赫兹测试等前沿技术方面的研 究。E-mail: hsl@ei41.com
  • 基金资助:
    预研项目 (31517050201), 国资委项目 (41ZD1415-3)

Design and realization of broadband spectrum measurement based on Rydberg atoms superheterodyne

HAN Shunli *, LIU Guixiang, CHAI Jiwang, ZHANG Yingyun, LIU Yang   

  1. Science and Technology on Electronic Test & Measurement Laboratory, The 41st Institute of China Electronic Technology Group Corporation, Qingdao 266555, China
  • Received:2024-12-31 Revised:2025-02-20 Published:2025-07-28 Online:2025-07-28

摘要: 量子传感器是理想的电磁频谱探测媒介, 有望突破传统频谱测量在响应带宽与测量灵敏度上的限制, 具有广 阔的应用前景。本文提出了一种基于原子混频机理的超宽带连续频谱测量系统, 重点分析了非谐振区域内本振射频 场对差频信号信噪比的影响。利用原子非谐振超外差技术, 在每个里德堡态上实现了一定频宽的电磁波频谱测量, 并通过快速调谐本振射频场和耦合光波长, 实现对跨微波 (1~40 GHz) 和太赫兹波 (110~170 GHz) 两个频段电磁频 谱的连续测量, 谐振区域最小可测量场强值为0.32 μV/cm, 非谐振区域40 GHz处最小可测量场强为2.34 μV/cm, 动 态范围超过70 dB, 频率分辨率≤10 Hz。本工作实验验证了基于里德堡原子的量子传感器具有全频带、高灵敏度电磁 频谱响应特性, 为高灵敏度原子频谱仪的研制奠定了研究基础。

关键词: 量子信息, 频谱测量, 量子传感, 里德堡原子, 超外差测量, 电磁场精密测量

Abstract: Quantum sensors represent an ideal medium for electromagnetic spectrum detection, offering the potential to overcome the limitations of traditional spectrum measurement principles in response bandwidth and measurement sensitivity, and have broad application prospects. This paper presents an ultra-wideband continuous spectrum measurement system based on Rydberg atoms mixer, and mainly analyzes the impact of local oscillator radio frequency (RF) field on the signal-to-noise ratio (SNR) of beat-note in the non-resonant region. Utilizing atomic non-resonant superheterodyne technology, we realize to measure the electromagnetic wave spectrum with a certain frequency bandwidth on each Rydberg state. By rapid tuning of the local RF field and the coupling laser wavelength, the continuous electromagnetic spectrum measurement across the microwave (1 – 40 GHz) and terahertz wave (110–170 GHz) bands is realized, achieving a minimum measurable field strength of 0.32 μV/cm in the resonant region and 2.34 μV/cm at 40 GHz in the non-resonant region, with a dynamic range exceeding 70 dB and a frequency resolution less than 10 Hz. This work have verified that quantum sensors based on Rydberg atoms possess the characteristics of full-band and high-sensitivity electromagnetic spectrum response, laying a research foundation for the development of high-sensitivity atomic spectrometers.

Key words: quantum imformation, spectrum measurement, quantum sensing, Rydberg atoms, superheterodyne measurement, electromagnetic field precision measurement

中图分类号: