| [1]Wang Shengbin , Dou Menghan , Wu Yuchun , et al. Research progress of distributed quantum computing[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 1-25.
王升斌, 窦猛汉, 吴玉椿, 等. 分布式量子计算研究进展[J]. 量子电子学报, 2024, 41(1): 1-25.
[2]Zhang H, Ma Y, Liao K Y, et al. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems [J]. Science Bulletin, 2024, 69(10): 1515-35.
[3]He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001.
贺青, 李栋, 谷立, 等. 基于里德堡原子的无线电技术研究进展[J]. 强激光与粒子束, 2024, 6(7): 07900.
[4]Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824.
[5]Jau Y Y, Carter T. Vapor-Cell-Based Atomic Electrometry for Detection Frequencies below 1 kHz [J]. Physical Review Applied, 2020, 13(5): 054034.
[6]Li L, Jiao Y C, Hu J L, et al. Super low-frequency electric field measurement based on Rydberg atoms [J]. Optics Express,2023, 31(18): 29228-29234.
[7]Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell [J]. New Journal of Physics, 2016, 18(5): 053017.
[8]Liu B, Zhang L H, Liu Z K, et al. Highly sensitive measurement of a megahertz RF electric field with a Rydberg-atom sensor [J]. Physical Review Applied, 2022, 18(1): 014045.
[9]Brown R C, Kayim B, Viray M A, et al. Very-high- and ultrahigh-frequency electric-field detection using high angular momentum Rydberg states [J]. Physical Review A, 2023, 107(5): 052605.
[10]Du Yijie , Lyu Ziyao , Hu Weidong , et al. Atomic?antenna?based quantum precision measurement of low?frequency electric fields and applications[J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 701-712.
杜艺杰, 吕子瑶, 胡伟东, 等. 基于原子天线的低频电场量子精密测量和应用[J]. 量子电子学报, 2024, 41(5): 701-712.
[11]Prajapati N, Robinson A K, Berweger S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping [J]. Applied Physics Letters, 2021, 119(21).
[12]Ding D S, Liu Z K, Shi B S, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system [J]. Nature Physics, 2022, 18(12): 1447-52
[13]Wu K D, Xie C, Li C F, et al. Nonlinearity-enhanced continuous microwave detection based on stochastic resonance [J]. Science Advances, 2024, 10(41): eado8130.
[14]Hu J L, Jiao Y C, He Y H, et al. Improvement of response bandwidth and sensitivity of Rydberg receiver using multi-channel excitations [J]. EPJ Quantum Technology, 2023, 10(1): 51.
[15]Kumar S, Fan H Q, Kübler H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells [J]. Opt Express, 2017, 25(8): 8625-37.
[16]Endo M, Schibli T R. Residual phase noise suppression for Pound-Drever-Hall cavity stabilization with an electro-optic modulator [J]. OSA Continuum, 2018, 1(1): 116-23.
[17]KUMAR S, FAN H, KüBLER H, et al. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout [J]. Scientific Reports, 2017, 7(1): 42981.
[18]Tu H T, Liao K Y, He G D, et al. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer[J]. Science Advances, 2024, 10(51): eads0683.
[19]Gong T, Shi S, Ji Z H, et al. Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms [J]. Chinese Physics B, 2023, 32(10): 103202.
[20]Borówka S, Pylypenko U, Mazelanik M, Parniak M. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms [J]. Nature Photonics, 2024, 18(1): 32-8.
[21]Jing M Y, Hu Y, Ma J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy [J]. Nature Physics, 2020, 16(9): 911-5.
[22]Cox K C, Meyer D H, Fatemi F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 2018, 121: 110502.
[23]Jiao Y C, Han X X, Fan J B, et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 2019, 12: 126002.
[24]Song Z F, Liu H P, Liu X C, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 2019, 27(6): 8848-8857.
[25]Holloway C L, Simons M T, Gordon J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1853-1857.
[26]Holloway C L, Gordon J A, Schwarzkopf A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms [J]. Applied Physics Letters, 2014, 104(24).
[27]Holloway C L, Simons M T, Gordon J A, et al. Atom-Based RF Electric Field Metrology: From Self-Calibrated Measurements to Subwavelength and Near-Field Imaging [J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-28.
[28]Fan H Q, Kumar S, Dashner R, et al. Sub-Wavelength Microwave Electric Field Imaging using Rydberg Atoms[C]// APS Division of Atomic, Molecular and Optical Physics Meeting. APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, 2014.
[29]Wade C G, ?ibali? N, De Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence [J]. Nature Photonics, 2017, 11(1): 40-3.
[30]Chen S, Reed D J, Mackellar A R, et al. Terahertz electrometry via infrared spectroscopy of atomic vapor [J]. Optica, 2022, 9(5): 485-91.
[31]Yang W G, Jing M Y, Zhang H, et al. Radio frequency electric field-enhanced sensing based on the Rydberg atom-based superheterodyne receiver [J]. Opt Lett, 2024, 49(11): 2938-41.
[32]Nikola ?ibali?, Jonathan D Pritchard, Charles S Adams, et al. ARC: An open-source library for calculating properties of alkali Rydberg atoms [J]. Computer Physics Communications, 2017, 220: 319-331.
[33]Meyer D H, Castillo Z A, Cox K C, Kunz P D. Assessment of Rydberg atoms for wideband electric field sensing [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(3): 034001.
[34]Chai J W, Liu Y, Zhang Y Y, et al. Continuous-frequency electric field measurements of D-band terahertz wave based on Rydberg atoms [J]. 2024. |