| Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400(6747): 849-852.
Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610.
Huang P W, Tang B, Chen X, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters[J]. Metrologia, 2019, 56(4): 045012.
Lyu W, Zhong J Q, Zhang X W, et al. Compact high-resolution absolute-gravity gradiometer based on atom interferometers[J]. Physical Review Applied, 2022, 18(5): 054091.
Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046.
Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Physical Review Letters, 2006, 97(1): 010402.
Yao Z W, Lu S B, Li R B, et al. Continuous dynamic rotation measurements using a compact cold atom gyroscope[J]. Chinese Physics Letters, 2016, 33(8): 083701.
Morel L, Yao Z, Cladé P, et al. Determination of the fine-structure constant with an accuracy of 81 parts per trillion[J]. Nature, 2020, 588(7836): 61-65.
Parker R H, Yu C, Zhong W, et al. Measurement of the fine-structure constant as a test of the Standard Model[J]. Science, 2018, 360(6385): 191-195.
Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the Newtonian constant of gravity[J]. Science, 2007, 315(5808): 74-77.
Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 2014, 510(7506): 518-521.
Tarallo M G, Mazzoni T, Poli N, et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects[J]. Physical Review Letters, 2014, 113(2): 023005.
Fray S, Diez C A, H?nsch T W, et al. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. [J]. Physical Review Letters, 2004, 93(24): 240404.
Zhou L, Long S T, Tang B, et al. Test of equivalence principle at {10}^{-8} level by a dual-species double-diffraction raman atom interferometer[J]. Physical Review Letters, 2015, 115(1): 013004.
Zhou L, He C, Yan S T, et al. Joint mass-and-energy test of the equivalence principle at the 10? 10 level using atoms with specified mass and internal energy[J]. Physical Review A, 2021, 104(2): 022822.
Jaffe M, Haslinger P, Xu V, et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass[J]. Nature Physics, 2017, 13(10): 938-942.
Canuel B, Bertoldi A, Amand L, et al. Exploring gravity with the MIGA large scale atom interferometer[J]. Scientific Reports, 2018, 8(1): 14064.
Badurina Leonardo. Ultralight Dark Matter Phenomenology at Atom Interferometers [D]. London: Department of Physics, King's College London, 2023.
Hamilton P, Jaffe M, Haslinger P, et al. Atom-interferometry constraints on dark energy[J]. Science, 2015, 349(6250): 849-851.
Long Shitong. Experimental Study on the Test of the Weak Equivalence Principle Based on the 85Rb-87Rb Dual-Component Cold Atom Interferometer [D]. Wuhan: University of Chinese Academy of Sciences (Institute of Physics and Mathematics, Chinese Academy of Sciences), 2017.
龙世同.基于85Rb-87Rb双组分冷原子干涉仪的弱等效原理检验的实验研究[D].武汉:中国科学院大学(中国科学院武汉物理与数学研究所),2017.
He Chuan. High-Precision Test of the Equivalence Principle Using an Atomic Interferometer [D]. Wuhan: University of Chinese Academy of Sciences (Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences), 2021.
何川.原子干涉仪高精度检验等效原理[D].武汉:中国科学院大学(中国科学院精密测量科学与技术创新研究院),2021.
Dickerson S M, Hogan J M, Sugarbaker A, et al. Multiaxis inertial sensing with long-time point source atom interferometry[J]. Physical Review Letters, 2013, 111(8): 083001.
Canuel B, Bertoldi A, Amand L, et al. Exploring gravity with the MIGA large scale atom interferometer[J]. Scientific Reports, 2018, 8(1): 14064.
Asenbaum P, Overstreet C, Kim M, et al. Atom-interferometric test of the equivalence principle at the {10}^{-12} level[J]. Physical Review Letters, 2020, 125(19): 191101.
Overstreet C, Asenbaum P, Curti J, et al. Observation of a gravitational Aharonov-Bohm effect[J]. Science, 2022, 375(6577): 226-229.
Hoth G W, Pelle B, Riedl S, et al. Point source atom interferometry with a cloud of finite size[J]. Applied Physics Letters, 2016, 109(7): 071113.
Kwolek J M, Black A T. Continuous sub-Doppler-cooled atomic beam interferometer for inertial sensing[J]. Physical Review Applied, 2022, 17(2): 024061.
Yankelev D, Avinadav C, Davidson N, et al. Atom interferometry with thousand-fold increase in dynamic range[J]. Science Advances, 2020, 6(45): eabd0650.
Tino G M, Vetrano F. Is it possible to detect gravitational waves with atom interferometers?[J]. Classical and Quantum Gravity, 2007, 24(9): 2167-2178.
Schubert C, Schlippert D, Gersemann M, et al. A scalable, symmetric atom interferometer for infrasound gravitational wave detection[J]. AVS Quantum Sci., 2024, 6(4): 044404.
Abe M, Adamson P, Borcean M, et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100)[J]. Quantum Science and Technology, 2021, 6(4): 044003.
Zhan M S, Wang J, Ni W T, et al. ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna[J]. International Journal of Modern Physics D, 2020, 29(04): 1940005.
Yan S T, Jiang J J, Zhou L, et al. Absolute-phase-shift measurement in a phase-shear-readout atom interferometer[J]. Physical Review A, 2023, 108(6): 063313.
Sugarbaker A, Dickerson S M, Hogan J M, et al. Enhanced atom interferometer readout through the application of phase shear[J]. Physical Review Letters, 2013, 111(11): 113002.
Goodman J W. Introduction to Fourier optics[M]. Roberts and Company publishers, 2005.
Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813. |