量子电子学报

• 图像与信息处理 • 上一篇    下一篇

基于稀疏采样的关联成像算法研究

孟文文1*,张家民2,时东锋2   

  1. (1合肥南极星环保科技有限公司 安徽 合肥 230000) (2中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室 安徽 合肥 230031)
  • 出版日期:2019-01-28 发布日期:2019-01-17
  • 通讯作者: 651783209@qq.com
  • 作者简介:孟文文(1986-),女,山东泰安人,硕士,算法工程师,主要从事数字信号处理算法方面的研究工作。 E-mail:651783209@qq.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 11404344)

Study of Correlated Imaging with Sparse Sampling

Meng Wenwen1*,Zhang Jiamin2,Shi Dongfeng2   

  1. (1 Hefei South Star Environmental Projection Technology Co., Ltd Anhui HF 230000) (2 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China)
  • Published:2019-01-28 Online:2019-01-17

摘要: 传统关联成像系统中对物体全部信息进行采样,而根据压缩感知理论可知绝大部分物体信息在某些变换下具有稀疏特性,因此对物体信息进行稀疏采样也可以复原出完整的物体信息。提出了利用关联成像对物体信息进行稀疏采样的方法,采用成像系统获取物体稀疏信息,再使用压缩感知算法对完整物体信息进行复原。对所提方法进行了实验研究,结果证实了使用稀疏采样能有效减少关联成像的数据量,提高系统的成像效率和质量。

关键词: 图像处理, 关联成像, 压缩感知, 稀疏采样

Abstract: For traditional correlated imaging system, the imaging scene is completely sampled by the illumination speckles. According to the compression theory, most of the object information has sparse characteristics under some transformations, and it can be recovered exactly from a relatively small number of samples. Here, a correlated imaging system with sparse speckles is proposed. Imaging scene is illuminated by sparse speckles, and the information of compressed scene is acquired by compressive imaging system. Finally, the complete scene information is accurately restored using compression sensing algorithm. The experimental results show that sparse speckles can effectively reduce the amount of data to improve the imaging efficiency and the quality of the imaging system.

Key words: image processing, correlated imaging, compression sensing, sparse sampling