量子电子学报 ›› 2020, Vol. 37 ›› Issue (5): 566-579.
杨勇1, 程学武1, 杨国韬2, 薛向辉3, 李发泉1∗
收稿日期:
2020-06-22
修回日期:
2020-07-12
出版日期:
2020-09-28
发布日期:
2020-09-28
通讯作者:
E-mail: lifaquan@apm.ac.cn
作者简介:
杨勇( 1984 - ), 湖南长沙人, 博士, 副研究员, 主要从事空间环境监测方面的研究。E-mail: yangyong@apm.ac.cn
基金资助:
YANG Yong1, CHENG Xuewu1, YANG Guotao2, XUE Xianghui3, LI Faquan1∗
Received:
2020-06-22
Revised:
2020-07-12
Published:
2020-09-28
Online:
2020-09-28
摘要: 大气探测激光雷达利用激光与大气的相互作用来主动遥感测量大气参数, 在大气科学研究、环境监测、 气象预报等领域发挥着越来越重要的作用。大气密度随高度呈指数下降, 对流层以上的高层大气密度稀薄, 探测 难度较高, 探测手段较少, 探测数据也较少。随着激光雷达技术的发展, 激光雷达对高层大气密度、温度、风场等 参数的探测能力逐步提高, 获得了较为丰富的高时间、空间分辨的观测数据, 并应用于中高层大气模式发展、临 近空间环境保障等领域。系统地介绍了高层大气激光雷达探测机制、国内相关激光雷达的探测能力及台站建设 情况, 并对高层激光雷达的发展趋势和应用前景进行了展望。
中图分类号:
杨勇, 程学武, 杨国韬, 薛向辉, 李发泉∗. 高层大气探测激光雷达研究进展[J]. 量子电子学报, 2020, 37(5): 566-579.
YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579.
[1] | Emmert J T. Thermospheric mass density: A review [J]. Advances in Space Research, 2015, 56(5): 773-824. |
[2] | Roble R G, Dickinson R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere |
and thermosphere? [J]. Geophysical Research Letters, 1989, 16(12): 1441-1444. | |
[3] | Yan Jixiang, Gong Shunsheng, Liu Zhishen. Lidar for Environment Monitoring (环境监测激光雷达) [M]. Beijing: Science |
Press, 2001 (in Chinese). | |
[4] | Sun Jinhui, Xia Qilin, Qiu Jinhuan, et al. Lidar observations of polar startospheric clouds in Antarctica [J]. Chinese Journal of |
Polar Research (极地研究), 1995, 7(1): 44-49 (in Chinese). | |
[5] | Wu Yonghua, Hu Huanling, Zhou Jun, et al. Measurements of stratosphere aerosol with L625 lidar [J]. Acta Optica Sinica (光 |
学学报) | , 2001, 21(8): 1012-1015 (in Chinese). |
[6] | Hu Shunxing, Hu Huanling, Zhang Yinchao, et al. Differential absorption lidar for environmental SO2 measurements [J]. |
Chinese Journal of Lasers (中国激光), 2004, 31(9): 1121-1126 (in Chinese). | |
[7] | Dong Yunsheng, Liu Wenqing, Liu Jianguo, et al. Application study of lidar in urban traffic pollution [J]. Acta Optica Sinica |
(光学学报), 2010, 30(2): 315-320 (in Chinese). | |
[8] | Gardner C S, Voelz D G. Lidar measurements of gravity-wave saturation effects in the sodium layer [J]. Geophysical Research |
Letters, 1985, 12(11): 765-768. | |
[9] | Chen H L, White M A, Krueger D A, et al. Daytime mesopause temperature measurements with a sodium-vapor dispersive |
Faraday filter in a lidar receiver [J]. Optics Letters, 1996, 21(15): 1093-1095. | |
[10] | She C Y, Sherman J, Yuan T, et al. The first 80 hour continuous lidar campaign for simultaneous observation of mesopause |
region temperature and wind [J]. Geophysical Research Letters, 2003, 30(6): 1319. | |
[11] | Marlton G, Charlton P A, Harrison G, et al. Using a global network of temperature lidars to identify temperature biases in the |
upper stratosphere in ECMWF reanalyses [J]. Atmospheric Chemistry and Physics Discussions, 2020: 1-20. | |
[12] | Cheng X W, Gong S S, Li F Q, et al. 24 h continuous observation of sodium layer over Wuhan by lidar [J]. Science in China |
Series G-Physics Mechanics & Astronomy, 2007, 50(3): 287-293. | |
[13] | Arnold K S, She C Y. Metal fluorescence lidar (light detection and ranging) and the middle atmosphere [J]. Contemporary |
Physics, 2003, 44(1): 35-49. | |
[14] | Yang Y L, Yang Y, Xia Y, et al. Solid-state 589 nm seed laser based on Raman fiber amplifier for sodium wind/temperature |
lidar in Tibet, China [J]. Optics Express, 2018, 26(13): 16226. | |
[15] | Zheng Wengang, Li Hongjun, Yang Guotao, et al. Lidar detection of the atmospheric densityand temperature over Wuhan [J]. |
Scientia Atmospherica Sinica (大气科学), 1999, 23(4): 397-402 (in Chinese). | |
[16] | Lv Hongfang, Yi Fan. Gravity wave characteristics observed by lidar and radiosonde in Wuhan [J]. Chinese Journal of Geophysics |
(地球物理学报), 2006, 49(6): 1582-1587 (in Chinese). | |
[17] | Wang Xiaobin, Sun Shuji, Chen Chun, et al. Lidar observations of middle atmospheric density and temperature over Qingdao |
[J] | Chinese Journal of Space Science (空间科学学报), 2011, 31(6): 778-783 (in Chinese). |
[18] | Wu Yonghua, Hu Huanling, Hu Shunxing, et al. Rayleigh-Raman scattering lidar for atmospheric temperature profiles measurements |
[J] | Chinese Journal of Lasers (中国激光), 2004, 31(7): 851-856 (in Chinese). |
[19] | Li Y J, Lin X, Song S L, et al. A combined rotational Raman-Rayleigh lidar for atmospheric temperature measurements over |
5∼ | 80 km with self-calibration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7055-7065. |
[20] | Cooney J. Measurement of atmospheric temperature profiles by Raman backscatter [J]. Journal of Applied Meteorology, 1972, |
11 | (1): 108-112. |
[21] | Arshinov Y F, Bobrovnikov S M, Zuev V E, et al. Atmospheric temperature measurements using a pure rotational Raman lidar |
[J] | Applied Optics, 1983, 22(19): 2984-2990. |
[22] | Girolamo P. Rotational Raman lidar measurements of atmospheric temperature in the UV [J]. Geophysical Research Letters, |
20 | 04, 31(1): L01106. |
[23] | Gibson A J, Thomas L, Bhattachacharyya S K. Laser observations of the ground-state hyperfine structure of sodium and of |
temperatures in the upper atmosphere [J]. Nature, 1979, 281: 131-132. | |
[24] | Fricke K H, von Zahn U. Mesopause temperatures derived from probing the hyperfine-structure of the D2 resonance line of |
sodium by lidar [J]. Journal of Atmospheric and Terrestrial Physics, 1985, 47(5): 499-512. | |
[25] | Bills R E, Gardner C S, She C Y. Narrow-band lidar technique for sodium temperature and Doppler wind observations of the |
upper-atmosphere [J]. Optical Engineering, 1991, 30(1): 13-21. | |
[26] | Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind [J]. |
Applied Optics, 2012, 51(22): 5401. | |
[27] | Gelbwachs J A. Iron Boltzmann factor lidar - proposed new remote-sensing technique for meospheric temperature [J]. Applied |
Optics, 1994, 33(30): 7151-7156. | |
[28] | Papen G C, Treyer D. Comparison of an Fe Boltzmann temperature lidar with a Na narrow-band lidar [J]. Applied Optics, 1998, |
37 | : 8477-8481. |
[29] | Chu X Z, Pan W, Papen G C, et al. Fe Boltzmann temperature lidar: Design, error analysis, and initial results at the North and |
South Poles [J]. Applied Optics, 2002, 41(21): 4400-4410. | |
[30] | Yu C M, Yi F. Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements [J]. Journal |
of Atmospheric & Solar Terrestrial Physics, 2008, 70(10): 1281-1288. | |
[31] | Tepley C A. Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar [J]. Journal of |
Geophysical Research-Atmospheres, 1994, 99(D12): 25781-25790. | |
[32] | Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM [J]. EPJ Web of |
Conferences, 2016, 119: 12002. | |
[33] | Korb C L, Gentry B M, Li S X F. Edge technique Doppler lidar wind measurements with high vertical resolution [J]. Applied |
Optics, 1997, 36(24): 5976-5983. | |
[34] | Liu Z S,Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering |
by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41(33): 7079. | |
[35] | Franke S J, Chu X Z, Liu A Z, et al. Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause |
region above Maui, Hawaii [J]. Journal of Geophysical Research-Atmospheres, 2005, 110(D9): D09S02. | |
[36] | Huang W T, Chu X Z, Wiig J, et al. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 |
km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar [J]. Optics Letters, 2009, 34(10): 1552. | |
[37] | Baumgarten G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to |
80 | km [J]. Atmospheric Measurement Techniques, 2010, 3: 1509-1518. |
[38] | Xu L, Hu X, Cheng Y Q, et al. Simulation of echo-photon counts of a sodium Doppler lidar and retrievals of atmospheric |
parameters [J]. Chinese Journal of Geophysics-Chinese Edition, 2010, 53(7): 1520-1528. | |
[39] | Dou X K, Han Y L, Sun D S, et al. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere |
and lower mesosphere [J]. Optics Express, 2014, 22(S5): A1203. | |
[40] | Yuan T, Yue J, She C Y, et al. Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption |
spectroscopy [J]. Applied Optics, 2009, 48(20): 3988-3993. | |
[41] | Lv D R, Pan W L, Wang Y N. Atmospheric profiling synthetic observation system in Tibet [J]. Advances in Atmospheric |
Sciences, 2018, 35(3): 264-267. | |
[42] | Zhang Wei, Wu Songhua, Song Xiaoquan, et al. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao |
suburb [J]. Acta Optica Sinica (光学学报), 2013, 33(6): 0628002 (in Chinese). | |
[43] | H¨offner J, Fricke B C. Accurate lidar temperatures with narrowband filters [J]. Optics Letters, 2005, 30(8): 890-892. |
[44] | Yang Y, Cheng X W, Li F Q, et al. A flat spectral Faraday filter for sodium lidar [J]. Optics Letters, 2011, 36(7): 1302-1304. |
[45] | Wang Feng, Hu Xiaoyang, Ye Yidong. Development of ultra-narrow band filter technique [J]. Laser Optoelectronics Progress |
[46] | Gong Shunsheng, Cheng Xuewu, Li Faquan, et al. Application of atomic controlled optical channel in opto-electronic system |
[J] | Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 1-6 (in Chinese). |
[47] | Du L F,Wang J H,Yang Y, et al. Continuous detection of diurnal sodium fluorescent lidar over Beijing in China [J]. Atmosphere, |
20 | 20, 11(1): 1-14. |
[48] | Xia Y, Cheng X W, et al. Sodium lidar observation over full diurnal cycles in Beijing, China [J]. Applied Optics, 2020, 59(6): |
15 | 29-1536. |
[49] | Fricke B C, Alpers M, Hoffner J. Daylight rejection with a new receiver for potassium resonance temperature lidars [J]. Optics |
Letters, 2002, 27(21): 1932-1934. | |
[50] | Lu Honghui, Yang Guotao, Wang Jihong, et al. Investigation of tidal wave activities over Wuhan by daytime sodium lidar [J]. |
Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(1): 17-24 (in Chinese). | |
[51] | Cheng X W, Yang Y, Wang Z L, et al. Joint observation results of Na layer and ionosphere in Wuhan during the Total Solar |
Eclipse [J]. Science China Earth Sciences, 2016, 59(4): 418-424. | |
[52] | Liu X, Xu J Y. Daytime lidar measurements of the sodium layer in China [J]. Science China Earth Sciences, 2016, 59(8): |
17 | 07-1708. |
[53] | BowmanM R, Gibson A J, Sandford M CW. Observation of mesospheric Na atoms by tuner laser radar [J]. Nature, 1969, 221: |
45 | 6-457. |
[54] | Rowlett J R, Gardner C S, Richter E S, et al. Lidar observations of wave-like structure in atmospheric sodium layer [J]. |
Geophysical Research Letters, 1978, 5(8): 683-686. | |
[55] | Clemesha B R. Sporadic neutral metal layers in the mesosphere and lower thermosphere [J]. Journal of Atmospheric and |
Terrestrial Physics, 1995, 57(7): 725-736. | |
[56] | Gong S S, Zeng X Z, Xue X J, et al. First time observation of sodium layer over Wuhan, China by sodium fluorescence lidar |
[J] | Science in China Series A, 1997, 40(11): 1228-1232. |
[57] | Plane J M C, Bailey S M, Baumgarten G, et al. Layered phenomena in the mesopause region [J]. Journal of Atmospheric and |
Solar-Terrestrial Physics, 2015, 127: 1-2. | |
[58] | H¨offner J, Friedman J S. The mesospheric metal layer topside: A possible connection to meteoroids [J]. Atmospheric Chemistry |
and Physics, 2004, 4(3): 801-808. | |
[59] | Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy |
[J] | Nature, 1987, 328(6127): 229-231. |
[60] | Pique J P, Moldovan I C, Fesquet V. Concept for polychromatic laser guide stars: One-photon excitation of the 4P3=2 level of a |
sodium atom [J]. Journal of the Optical Society of America A, 2006, 23(11): 2817-2828. | |
[61] | Li Faquan, Cheng Xuewu, Yang Yong, et al. Research on preparation and imaging of upper atmosphere sodium laser guide |
star [J]. Scientia Sinica (中国科学), 2011, 41(11): 1261-1267 (in Chinese). | |
[62] | Higbie J M, Rochester S M, Patton B, et al. Magnetometry with mesospheric sodium [J]. Proceedings of the National Academy |
of Sciences of the United States of America, 2011, 108(9): 3522-3525. | |
[63] | Pedreros B F, Bonaccini C D, Budker D, et al. Remote sensing of geomagnetic fields and atomic collisions in the mesosphere |
[J] | Nature Communications, 2018, 9(1): 3981. |
[64] | Fan T W, Yang X Z, Dong J Y, et al. Remote magnetometry with mesospheric sodium based on gated photon counting [J]. |
Journal of Geophysical Research: Space Physics, 2019, 124(9): 7505-7512. | |
[65] | Plane J M C. The chemistry of meteoric metals in the Earth’s upper-atmosphere [J]. International Reviews in Physical Chemistry, |
19 | 91, 10(1): 55-106. |
[66] | Gong S S, Yang G T, Wang J M, et al. A double sodium layer event observed over Wuhan, China by lidar [J]. Geophysical |
Research Letters, 2003, 30(5): 13. | |
[67] | Wang J H, Yang Y, Cheng XW, et al. Double sodium layers observation over Beijing, China [J]. Geophysical Research Letters, |
20 | 12, 39(15): L15801. |
[68] | Xue X H, Dou X K, Lei J H, et al. Lower thermospheric-enhanced sodium layers observed at low latitude and possible |
formation: Case studies [J]. Journal of Geophysical Research: Space Physics, 2013, 118: 2409-2418. | |
[69] | Zhang T M, Wang J H, Fu J, et al. Observation of the double sodium layer over Haikou, China by lidar [J]. Chinese Journal of |
Space Science, 2013, 33(4): 410-412. | |
[70] | Jiao J, Yang G T,Wang J H, et al. Sporadic potassium layers and their connection to sporadic E layers in the mesopause region |
at Beijing, China [J]. Solar-Terrestrial Physics, 2017, 3(2): 64-69. | |
[71] | Xun Y C, Yang G T, She C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central |
midlatitude lidar stations [J]. Geophysical Research Letters, 2019, 46(4): 1892-1899. | |
[72] | Xun Y C, Yang G T, She C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central |
midlatitude lidar stations [J]. Geophysical Research Letters, 2019, 46(4): 1892-1899. | |
[73] | Wang Y F, Wang W, Xie Y R, et al. Vibrational overtone excitation of D2 in a molecular beam with a high-energy, narrowbandwidth, |
nanosecond optical parametric oscillator/amplifier [J]. Review of Scientific Instruments, 2020, 91(5): 053001. | |
[74] | Wu F J, Zheng H R, Cheng X W, et al. Simultaneous detection of the Ca and Ca+ layers by a dual-wavelength tunable lidar |
system [J]. Applied Optics, 2020, 59(13): 4122-4130. | |
[75] | Gerding M, Alpers M, Hoffner J, et al. Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications |
for their formation [J]. Annales Geophysicae, 2001, 19(1): 47-58. | |
[76] | Wang Chi. New chains of space weather monitoring stations in China [J]. Space Weather, 2010, 8(8): S08001. |
[77] | Dou X K, Xue X H, Chen T D, et al. A statistical study of sporadic sodium layer observed by sodium lidar at Hefei (31.8◦ N, |
11 | 7.3◦ E) [J]. Annales Geophysicae, 2009, 27(6): 2247-2257. |
[1] | 龚文林∗ , 陈明亮 , 韩申生∗. 激光关联成像雷达研究进展与展望[J]. 量子电子学报, 2022, 39(6): 835-850. |
[2] | 马慧敏 ∗ , 檀 磊 , 张京会 , 张鹏飞 , 宁孝梅 , 刘海秋 , 高彦伟 . 基于深度学习的合成孔径成像系统共相误差检测研究综述[J]. 量子电子学报, 2022, 39(6): 927-941. |
[3] | 曹也, 程亮亮, 杨昊, 方志远, 李路, 邓旭, 邢昆明, 王邦新, 谢晨波, . 基于FPGA 的激光雷达数据采集卡设计[J]. 量子电子学报, 2022, 39(4): 620-631. |
[4] | 刘晨凯, 胡明勇∗, 李昭阳, 孙东起, 封志伟, 蔡晓波. 一种多波长激光雷达光学系统设计[J]. 量子电子学报, 2021, 38(6): 806-814. |
[5] | 李仕春, ∗, 黄祖鑫, 石东东, 辛文辉, 宋跃辉, 高 飞, 华灯鑫, ∗. 机载近红外偏振激光雷达探测过冷云研究[J]. 量子电子学报, 2021, 38(6): 872-879. |
[6] | 成 远, 张 振, 华灯鑫, 宫振峰, 梅 亮∗. NO2 差分吸收激光雷达技术研究进展[J]. 量子电子学报, 2021, 38(5): 580-592. |
[7] | 张钦伟, 曹连振∗, 刘 霞, 杨 阳, 赵加强, 李英德. 光子纠缠态在 non-Kolmogorov 大气湍流中纠缠退化的研究[J]. 量子电子学报, 2021, 38(4): 496-503. |
[8] | 冷坤, 杨云涛, 谭哲, 龚艳春, 武文远∗. 基于支持向量机的激光大气传输效能评估方法[J]. 量子电子学报, 2020, 37(5): 547-555. |
[9] | 周正兰, 周源, 徐华锋, 屈军∗. 特殊关联部分相干光研究进展[J]. 量子电子学报, 2020, 37(5): 615-632. |
[10] | 储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭, ∗. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580-600. |
[11] | 习锋杰, 杨轶, 靖旭, 杜少军, 许晓军. 水平蒙气色差对光轴标定的影响[J]. 量子电子学报, 2020, 37(4): 386-391. |
[12] | 余佳益, 蔺淑琴, 徐颖, 朱新蕾, 王飞, 蔡阳健, ∗. 特殊关联结构部分相干光束大气传输研究进展[J]. 量子电子学报, 2020, 37(4): 392-408. |
[13] | 王英俭, ∗, 时东锋, . 大气对光学成像影响及校正技术[J]. 量子电子学报, 2020, 37(4): 409-417. |
[14] | 胡帅, ∗, 刘磊, ∗ 刘西川, 高太长, . 大气粒子多角度散射特性测量技术研究进展[J]. 量子电子学报, 2020, 37(4): 477-496. |
[15] | 黄印博, 曹振松, ∗, 卢兴吉, 黄俊, 刘强, 戴聪明, 黄宏华, 朱文越, , 饶瑞中, 王英俭, . 激光外差技术高分辨整层大气透过率测量 及水汽浓度反演研究[J]. 量子电子学报, 2020, 37(4): 497-505. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||