量子电子学报 ›› 2022, Vol. 39 ›› Issue (3): 354-363.doi: 10.3969/j.issn.1007-5461.2022.03.007

• 图像与信息处理 • 上一篇    下一篇

基于改进 Faster R-CNN 的无人机 小目标检测算法

张杨∗, 程正东, 朱斌   

  1. ( 国防科技大学脉冲功率激光技术国家重点实验室, 安徽合肥230037 )
  • 收稿日期:2020-09-11 修回日期:2020-09-17 出版日期:2022-05-28 发布日期:2022-05-28
  • 通讯作者: E-mail: ahjpzy@163.com E-mail:ahjpzy@163.com
  • 作者简介:张杨( 1996 - ), 安徽阜阳人, 研究生, 主要从事图像处理和目标检测方面的研究。E-mail: ahjpzy@163.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 61307025), Natural Science Foundation of Anhui Province of China (安徽省自然科学基金, 1308085QF122)

Small target detection algorithm of drones based on improved Faster R-CNN

ZHANG Yang∗, CHENG Zhengdong, ZHU Bin   

  1. ( State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China )
  • Received:2020-09-11 Revised:2020-09-17 Published:2022-05-28 Online:2022-05-28

摘要: 为提升两阶段目标检测算法Faster R-CNN 对无人机小目标的检测识别效果, 提出了一种改进的Faster R-CNN 目标检测算法。对原始Faster R-CNN 算法的特征提取网络进行改进, 使用卷积层更少的ResNet-18 作 为骨干网络, 减少算法的参数量; 针对无人机目标特点, 对Faster R-CNN 算法的特征金字塔网络中的特征融合 方法进行改进, 增强了目标特征与背景特征的对比度; 使用双线性插值的方法改善因感兴趣区域池化而造成的 预测框偏离的问题。最后, 在构建的低空无人机数据集上对改进的算法进行了实验验证,结果表明提出的改进 Faster R-CNN 目标检测算法检测速度达到了35.5 帧/秒(FPS), 较原始Faster R-CNN 算法的15.8 FPS, 速度提高 了约一倍, 且算法的平均精确度均值mAP 提升了0.7%, 有效提高了算法对无人机小目标的检测识别性能。

关键词: 图像处理, 目标检测, 深度学习, 无人机

Abstract: In order to improve the detection and recognition effect of the two-stage target detection algorithm Faster R-CNN on small target of drones, an improved Faster R-CNN target detection algorithm is proposed. In the improved algorithm, firstly, the feature extraction network of the original Faster R-CNN algorithm is improved, and ResNet-18 with fewer convolutional layers is used as the backbone network to reduce the number of parameters of the algorithm. Secondly, according to the characteristics of the drone target, the feature fusion method in the feature pyramid networks of Faster R-CNN is improved to enhance the contrast between target feature and background feature. Thirdly, the bilinear interpolation method is used to solve the problem of the deviation of the prediction frame caused by the pooling of regions of interest. Furthermore, the verification experiments are carried out on the constructed low-altitude drone data set. The results show that the improved Faster R-CNN target detection algorithm has a detection speed of 35.5 frames per second (FPS), which is about double the speed of the original Faster R-CNN algorithm (15.8 FPS), and the improved algorithm’s mean avergage precison (mAP) is increased by 0.7%, which effectively improves the detection and recognition performance of the algorithm for drone small targets.

Key words: image processing, target detection, deep learning, drones

中图分类号: