量子电子学报 ›› 2023, Vol. 40 ›› Issue (2): 217-237.doi: 10.3969/j.issn.1007-5461.2023.02.005
潘晓凯1 , 姜梦杰1,2 , 王 东1,3 , 吕旭阳1,2 , 蓝诗琪 1,2 , 卫英东 1,4 , 何 源1,5 , 郭书广1,3 , 陈平平1 , 王 林1∗ , 陈效双1 , 陆 卫1
收稿日期:
2022-10-08
修回日期:
2022-11-17
出版日期:
2023-03-28
发布日期:
2023-03-28
通讯作者:
E-mail: wanglin@mail.sitp.ac.cn
E-mail:E-mail: wanglin@mail.sitp.ac.cn
作者简介:
潘晓凯 ( 1997 - ), 浙江温州人, 研究生, 主要从事太赫兹探测器件设计与制作方面的研究。 E-mail: pxiaok@163.com
基金资助:
PAN Xiaokai 1 , JIANG Mengjie 1,2 , WANG Dong 1,3 , LYU Xuyang 1,2 , LAN Shiqi 1,2 , WEI Yingdong 1,4 , HE Yuan 1,5 , GUO Shuguang 1,3 , CHEN Pingping 1 , WANG Lin 1∗ , CHEN Xiaoshuang 1 , LU Wei 1
Received:
2022-10-08
Revised:
2022-11-17
Published:
2023-03-28
Online:
2023-03-28
摘要: 自红外辐射被发现以来, 科学家一直在努力将红外技术应用于地球观测、航天遥感和宇宙探索等领域。 目前, 第二、三代红外探测器已进入大规模应用, 高端三代也在逐步突破, 并随着材料制备技术、纳米加工技 术、集成技术和相关交叉学科的发展, 开始出现了具有前瞻性的新材料、新技术和新概念。红外-太赫兹探测器 也开始由单一探测、被动探测和探测分立的传统探测器形式, 逐渐走向多维探测、自主探测和智能化芯片集成 的变革发展方向。在介绍光电探测器物理机制的基础上, 概述了红外-太赫兹探测技术在天文遥感领域的应用与 发展, 重点综述了红外-太赫兹探测器有望出现变革式发展的三大方向, 包括基于人工微结构的光场集成、基于 三维堆叠技术的片上智能化和新型低维材料的应用, 并展望了未来探测器向着超高性能、多维感知、智能化和 感存算一体化的发展趋势。
中图分类号:
潘晓凯 , 姜梦杰, , 王 东, , 吕旭阳, , 蓝诗琪 , , 卫英东 , , 何 源, , 郭书广, , 陈平平 , 王 林∗ , 陈效双 , 陆 卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217-237.
PAN Xiaokai , JIANG Mengjie , , WANG Dong , , LYU Xuyang , , LAN Shiqi , , WEI Yingdong , , HE Yuan , , GUO Shuguang , , CHEN Pingping , WANG Lin ∗ , CHEN Xiaoshuang , LU Wei . Application and frontier trend of infrared-terahertz photoelectric detector[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217-237.
[1] Wong M H, Giraldo J P, Kwak S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics [J]. Nat Mater, 2017, 16 (2 ): 264 - 272. [2] Miao J, Song Jinshu, Bo Xu, et al. Single pixel black phosphorus photodetector for near-infrared imaging [J]. Small, 2018, 14(2):1702082. [3] Ye L, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction [J]. ACS Photonics, 2016, 3(4): 692-699. [4] Manoj K. Singh, Ritesh Gautam, Developing a long-term high-resolution winter fog climatology over south Asia using satellite observations from 2002 to 2020,Remote Sensing of Environment, 2022, 279: 113128. [5] Bürsing H, Ebert R, Huckridge D A, et al. Next decade in infrared detectors [J]. 2017, 3: 100. [6] Wang Chongru, Yang Lifeng, Cao Xun, Wang Yueming. Latest progress of aviation infrared photoelectric remote sensing technology [J]. Journal of Infrared and Millimeter Wave, 2022,41(1):110-121(in Chinese). 王崇儒,杨利峰,曹汛,王跃明.航空红外光电遥感技术最新进展[J].红外与毫米波学报,2022,41(1):110-121. [7] Wang Hongpeng, Wan Xiong, He Zhiping. Research on deep space material composition detection technology based on infrared reflectance spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018,0(S1):59-60(in Chinese). 王泓鹏,万雄,何志平.基于红外反射光谱深空物质成分探测技术的研究[J].光谱学与光谱分析,2018,0(S1):59-60. [8] Rogalski A. History of infrared detectors [J]. Opto-Electronics Review, 2012, 20 (3): 279-308. [9] Ma Qingjun, Wang Jianyu, Shu Rong. Development of infrared spectrometer in deep space exploration [J]. Infrared, 2005(7):1-7(in Chinese). 马庆军,王建宇,舒嵘.红外光谱仪在深空探测领域的发展状况[J].红外,2005(7):1-7. [10] The cosmic near-infrared background radiation exceeds or originates from the first generation of black holes [J]. China Optics, 2013,6(4):608-609. [11] Shen Jingling, Zhang Cunlin. New terahertz nondestructive testing technology and its application [J]. Nondestructive Testing, 2005,27 (3): 146—147(in Chinese). 沈京玲,张存林.太赫兹波无损检测新技术及其应用[J].无损检测,2005,27(3):146—147. [12] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications explosives, weapons and drugs [J]. Semicond. Sci. Technol, 2005, 20(7): S266-S280. [13] L. Wang, M. Yuan, H. Huang, et al. Recognition of edge object of human body in THz security inspection system [J]. Infrared and Laser Engineering, 2017, 46(11): 149-154M. [14] A. Akkas. Terahetz wireless data communication [J]. Wireless Netw, 2019, 25: 145-155. [15] Hubers H W. Terahertz heterodyne receivers [J]. Sel. Top. Quantum Electron, 2008, 14(2): 378-391. [16] Wild W. Terahertz Heterodyne Technology for Astronomy and Planetary Science [C]. In: Proceedings of Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, 2007: 323-325. [17] W.Herschel, Experiments on the refrangibility of the invisible rays of the Sun [J]. Philos.Trans.Roy.Soc.London, 1800, 90: 284. [18] E.S. Barr, Historical survey of the early development of the infrared spectral region [J]. Am.J.Phys,1960, 28: 42–54. [19] E.S. Barr, The infrared pioneers––II.Macedonio Melloni [J].Infrared Phys,1962, 2: 67–73. [20] BARR E S. Historical survey of the early development of the infrared spectral region [J]. American Journal of Physics, 1960, 28(1): 42-54. [21] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors [J]. J . Appl. Phys,1987,62(6): 2545-2548. [22] A. Einstein. Concerning an Heuristic Point of View Toward the Emission and Transformation of Light. Phys, 1905,17:132. [23] T.W. Case, Notes on the change of resistance of certain substrates in light [J]. Phys.Rev,1917, 9: 305–310. [24] Cashman R J. Film-Type Infrared Photoconductors [J]. Proceedings of the IRE, 1959,47(9): 1271-1475. [25] LOVELL D J. The development of lead salt detectors [J]. American Journal of Physics, 1969, 37(5): 467-478. [26] ELLIOTT T. Recollections of MCT work in the UK at Malvern and Southampton [C]. SPIE, 2009, 7298:72982. [27] Grein C H, Young P M, Flatte M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152. [28] Li Junbin, Li Dongsheng, Wu Shengjuan, et al. Research progress of the second kind of superlattice infrared focal plane detector [J]. Infrared Technology, 2021,43(11):1034-1043(in Chinese). 李俊斌,李东升,吴圣娟,等.二类超晶格红外焦平面探测器的研究进展 [J].红外技术,2021,43(11):1034-1043. [29] Levine B F. Quantum-well infrared photodetectors [J]. Journal of Applied Physics, 1993, 74(8): R1-R81. [30] Shao Xiumei, Gong Haimei, Li Xue, et al. Research progress of high-performance short-wave infrared InGaAs focal plane detector [J]. Infrared Technology, 2016,38(8): 629-635(in Chinese). 邵秀梅,龚海梅,李雪,等.高性能短波红外InGaAs焦平面探测器研究进展 [J].红外技术,2016,38(8):629-635。 [31] Yao Libin, Chen Nan, Hu Douming, et al. Digital infrared focal plane detector (specially invited) [J]. Infrared and Laser Engineering, 2022,51(1): 90-100(in Chinese). 姚立斌,陈楠,胡窦明,等.数字红外焦平面探测器(特邀) [J].红外与激光工程,2022,51(1):90-100. [32] Lu X, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect [J]. Advanced Materials, 2019, 31(50): 1902044. [33] Bhan R K, Saxena R S, Jalwania C R, et al. Uncooled infraredimicrobolometer arrays and their characterisation techniques [J]. Defence Science Journal, 2009, 59(6): 5. [34] T. Low and P. Avouris, Graphene plasmonic for terhertz to mid-infrared applications [J]. ACS Nano, 2014, 8(2):1086–1101. [35] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nat. Nanotechnol, 2014, 9: 780–793. [36] Hu F, Sun J, Brindley H E, et al. Systems analysis for thermal infrared“THz Torch”applications [J]. Journal of Infrared Millimeter & Terahertz Waves, 2015, 36(5): 474-495. [37] Müller R, Gutschwager B, Hollandt J, et al. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz [J]. Journal of Infrared Millimeter & Terahertz Waves, 2015, 36(7): 654-661. [38] Qin H, Sun J D, Liang S X, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor [J]. Carbon, 2017, 116:760-765. [39] AN De-Yue. High temperature superconducting terahertz detector [J]. Advanced Materials, 2015, 3(50): 19020. [40] Ghosh S, Mukhopadhyay B, Sen G, et al. Performance analysis of GeSn/SiGeSn quantum well infrared photode-tector in terahertz wavelength region [J]. Physica E-Low Dimensional Systems & Nanostructures, 2020, 115: 113692. [41] Lewis R A. A review of terahertz sources [D]. Journal of Physics : Applied Physics, 2014, 47(37): 374001. [42] Liu Z, Liang Z, Tang W, et al. Design and fabrication of low deformation micro-bolometers for THz detectors [J]. Infrared Physics & Technology, 2020, 105: 103241. [43] Ullah Z, Witjaksono G, Nawi I, et al. A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications [J]. Sensors, 2020, 20(5): 1401. [44] SIEGEL P H. Terahertz technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928. [45] Bai Tingzhu. Principle and Technology of Photoelectric Imaging [M]. Beijing: Beijing Institute of Technology Press, 2006. [46] ALMA Partnershipet al. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau Region [J]. Astrophys, 2015, 808: L3. [47] B. Koopman et al. The CCAT-prime extreme field-of-view sub millimeter telescope on Cerro Chajnantor [J]. Am. Astron. Soc. Meeting Abstr, 2017, 229:437. [48] ROBSON I, HOLLAND W S, FRIBERG P. Celebrating 30 years of science from the James Clerk Maxwell Telescope [J]. Royal Society Open Science, 2017, 4(9): 1–53. [49] WOOTTEN A, THOMPSON A R. The Atacama large millimeter/submillimeter array [J]. Proceedings of the IEEE, 2009, 97(8): 1463–1471. [50] N. Galitzki et al. The next generation BLAST experiment [J]. Astron. Instrum, 2014, 3: 1440001. [51] E. T. Young et al. Early science with SOFIA, the stratospheric observatory for infrared astronomy [J]. Astrophys, 2012, 749: L17. [52] P. Temi et al. The SOFIA observatory at the start of routine science operations: mission capabilities and performance [J]. Astrophys. J. Suppl. Ser, 2014, 212: 24. [53] G. Neugebauer et al. The Infrared Astronomical Satellite (IRAS) mission [J]. Astrophys, 1984, 278: L1–L6. [54] G. Neugebauer, H. J. et al. The infrared astronomical satellite (IRAS) mission [J]. The As. Trophysical Journal,1984, 278: 1-6. [55] Mather, J. C. Optical Engineering [J]. Vol.21,No. 198.4:769. [56] H. Murakami et al. The IRTS (Infrared Telescope in Space) mission [J]. Publ. Astron. Soc. 1996 ,48: L41–L46. [57] M. F. Kessler et al. The Infrared Space Observatory (ISO) mission [J]. Astron. Astrophys, 1996, 315(2): L27–L31 . [58] M. W. Werner et al. The Spitzer space telescope mission [J]. Astrophys. J. Suppl. Ser, 2004, 154:1–9. [59] G. L. Pilbratt et al. Herschel space observatory: an ESA facility for far-infrared and submillimetre astronomy [J]. Astron. Astrophys, 2010, 518: L1. [60] Planck Collaboration. Planck early results. I. The Planck mission [J]. Astron. Astrophys, 2011,536: A1. [61] E. L. Wright et al. The Wide-Field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance [J]. Astron, 20101,40: 1868–1881. [62] 1Michael T M,Marie B, Michael D, et al. Systems Engineering on the James Webb Space Telescope [C]. Orlando Florida USA: SPIE,2010: 1002-1015. [63] Ye Zhenhua, Li Huihao, et al. Frontier hotspots and changing trends of infrared photoelectric detectors [J]. Journal of Infrared Millimeter Wave, 2022, 1: 15-25(in Chinese). 叶振华, 李辉豪, 等.红外光电探测器的前沿热点与变革趋势 [J]. 红外毫米波学报, 2022, 1: 15-25. [64] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces [J]. Nano Letters, 2016, 16 (9): 5319-5325. [65] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230 phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces [J]. Nano Letters, 2017, 17(5): 3027-3034. [66] Nicholls L H, Rodriguez-Fortuno F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials [J]. Nature Photonics, 2017, 11(10): 628. [67] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces [J]. Nano Letters, 2016, 17(1): 407-413. [68] Qu Y, Li Q, Gong H, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films [J]. Advanced Optical Materials, 2016, 4(3): 480-486. [69] Primot Jér?me. Theoretical description of Shack–Hart? mann wave-front sensor[J]. Optics Communications. 2003,222 (1) : 81-92. [70] Y. Fu, C. Min, J. Yu, et al. Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces [J]. Nanoscale, 2019, 11(39):18303-18310. [71] F. Feng, G, Si, C. Min, et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities [J]. Light: Science & Applications, 2020, 9(1): 95. [72] J. Wei, Y. Li, L. Wang, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection [J]. Nature Communications, 2020, 11(1): 6404. [73] Gunning W J, Denatale J, Stupar P, et al. Dual band adaptive focal plane array: an example of the challenge and potential of intelligent integrated microsystems [C]. Proc. SPIE, 2006. [74] Musca C A, Antoszewski J, Keating A J, et al. MEMS based microspectrometers for infrared sensing 2007 [C]. IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 2007,137-138. [75] Mao H, Silva KKMBD, Martyniuk M, et al. MEMS Based Tunable Fabry–Perot Filters for Adaptive Multi? spectral Thermal Imaging [J]. Journal of Microelectrome? chanical Systems. 2016, 25 (1): 227-235. [76] Dorota S.Temple,High density 3D integration technology for massively parallel signal processing in advanced infrared focal plane array sensors [C]. International Electron Devices Meetings, 2006. [77] Guo Jiaxiang, Xie Runzhang, Wang Peng, et al. Multi-dimensional infrared photoelectric detector [J]. Journal of Infrared and Millimeter Wave, 2022,41(1): 40-60. 郭家祥,谢润章,王鹏,等.多维度红外光电探测器 [J]. 红外与毫米波学报, 2022,41(1): 40-60. [78] Grein C H, Young P M, Flatte M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152. [79] Viti L, Coquillat D, Politano A, et al. Plasma-wave terahertz detection mediated by topological insulators surface states [J]. Nano Lett, 2016, 16(1): 80-87. [80] Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction [J]. Nano Lett, 2019, 19(5): 2765-2773. [81] Luxmoore I J, Liu Peter, Li Penglei, et al. Graphenemetamaterial photodetectors for integrated infrared sensing [J]. ACS Photonics, 2016, 3(6): 936-941. [82] A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo. Graphene-based light sensing: Fabrication, characterization, physical properties and performance [J]. Materials, 2018, 11: 1762. [83] V. Ryzhii, M. Ryzhii, M. S. Shur, V. Mitin, A. Satou, T. Otsuji, Resonant plasmonic terahertz detection in graphene split-gate fieldeffect transistors with lateral pn junctions, Journal of Physics [D]. Applied Physics, 2016, 49 (31) 1361-6463. [84] D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, Z. Liu, Plasmonenhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions [J]. Am Chem Soc , 2013,135(30): 6-9. [85] L. Wang, C. Liu, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, W. Tang, A. Yu, S.-W. Wang, W. Lu, Toward sensitive room-temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor [J]. Adv. Funct. Mater, 2017, 27: 1604414. [86] A. Castellanos-Gomez, Black phosphorus: narrow gap, wide applications [J]. Phys. Chem. Lett. 2015, 6:4280–4291. [87] M. Engel, M. Steiner, P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging [J]. Nano Lett. 2014, 14: 6414–6417. [88] D. Lee, Y. Choi, E. Hwang, M.S. Kang, S. Lee, J.H. Cho, Black phosphorus nonvolatile transistor memory [J]. Nanoscale, 2016, 8: 9107–9112. [89] Tan C, Cao X, Wu X J, et al. Recent advances in ultranthin two-dimensional nanomaterials [J]. Chemical Reviews, 2017,117(9): 6225-6331. [90] L.Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M.S. Vitiello, Black phosphorus terahertz photodetectors [J]. Adv. Mater, 2015,27: 5567–5572. [91] Vitl L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes [J]. Nanoscale, 2019, 11(4): 1995-2002. [92] Wanlong Guo, Zhuo Dong, et al. Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices [J]. Adv. Sci. 2020: 1902699. [93] J.B. Khurgin, Two-dimensional exciton-polariton-light guiding by transition metal dichalcogenide monolayers [J]. Optica, 2015, 2: 740–742. [94] Guo Q, Pospischil Andreas, Bhuiyan Maruf, et al. Black phosphorus mid-infrared photodetectors with high gain [J]. Nano Lett, 2016, 16(7): 4648-4655. [95] H. Liu, Z. Chen, X. Chen, S. Chu, J. Huang, R. Peng, Terahertz photodetector arrays based on a large scale MoSe2 monolayer [C]. Mater. Chem, 2016, 4: 9399–9404. [96] R. Yoshimi, A. Tsukazaki, K. Kikutake, J.G. Checkelsky, K.S. Takahashi, M. Kawasaki, Y. Tokura, Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor [J]. Nature Mater, 2014,13: 253–257. [97] Lawal A , Shaari A , Ahmed R , et al. First-principles investigations of electron-hole inclusion effects on optoelec? tronic properties of Bi2Te3, a topological insulator for broadband photodetector [J]. Physica B: Condensed Matter, 2017, 520:69-75. [98] L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions [J]. Phys. Rev. Lett, 2007,98 :106803. |
[1] | 吕海燕 , 洪占勇 , 杜先常 , . 单光子探测器制冷系统研究[J]. 量子电子学报, 2023, 40(3): 400-406. |
[2] | 张若雅 , 朱巧芬 , 张 岩 . 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报, 2023, 40(3): 301-318. |
[3] | 徐建伟 , 欧阳收剑 , 段守鑫 , 邹林儿 , 邓晓华 , 沈 云 , . 太赫兹平面环偶极子超材料传感器及地沟油检测[J]. 量子电子学报, 2023, 40(3): 333-339. |
[4] | 陈启明, 傅仁轩, 徐勇军, 刘益标, 周金运, 宋显文. 移动焦平面正反面曝光制备 SU-8 微结构及 PDMS 浓度梯度产生器[J]. 量子电子学报, 2023, 40(3): 415-422. |
[5] | 董秦鲁, 韩一平∗ , 张启凡. 太赫兹波在高超声速目标等离子体 鞘套中的传输特性[J]. 量子电子学报, 2023, 40(2): 258-266. |
[6] | 姚柏志 , 石粒力 , 吴敬波, , 陈 健 , ∗ , 吴培亨 , . 极低温下高灵敏太赫兹探测阵列的信号读出[J]. 量子电子学报, 2023, 40(2): 267-274. |
[7] | 汪辰宇♯ , 廖 宇♯ , 梅志杰, 刘旭东, 孙怡雯∗. 基于 GaAs 表面等离子体栅阵结构 的太赫兹调制器[J]. 量子电子学报, 2023, 40(2): 275-281. |
[8] | 陈伟栋# , 卓琳青# , 朱文国 , 郑华丹 , 钟永春 , 唐洁媛, , 肖 毅 , 谢梦圆 , 张 军 , 余健辉∗ , 陈 哲, ∗. 光纤集成光电探测器研究进展[J]. 量子电子学报, 2022, 39(6): 942-954. |
[9] | 吴仍来∗, 余亚斌, 肖世发, 全军. 单层原子的厚度对等离激元色散关系的修正[J]. 量子电子学报, 2022, 39(4): 541-548. |
[10] | 王洋, 李新∗, 黄雄豪, 刘恩超, 张艳娜. 太阳光谱辐照度仪波长扫描设计[J]. 量子电子学报, 2022, 39(4): 519-530. |
[11] | 孟维利∗, 王晴晴, 邵静, 程宏伟, 宫昊. 石墨烯基杂化聚合物太阳能电池中光活性层 组成对器件性能的影响[J]. 量子电子学报, 2022, 39(4): 613-619. |
[12] | 张立∗, 王琦. 三角形截面GaN 纳米线中的Fr¨ohlich 电子-声子相互作用哈密顿[J]. 量子电子学报, 2022, 39(4): 632-643. |
[13] | 许文昊, 寿一畅, 罗海陆. 光的自旋-轨道相互作用[J]. 量子电子学报, 2022, 39(2): 159-181. |
[14] | 裴志成, 丁朝华∗, 耿艳波, 肖景林. 单层过渡金属硫族化合物中弱耦合极化子的磁场效应[J]. 量子电子学报, 2021, 38(4): 539-544. |
[15] | 郑丽君 刘春娟 汪再兴 孙霞霞 刘晓忠. 6H-SiC基 MPS二极管正向双势垒特性研究[J]. 量子电子学报, 2021, 38(1): 99-107. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1049
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 654
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||