[1]. Zhu Y R, Shen X J, Su X, et al. Concentration dependent structural, thermal and luminescence properties in Er3+/Tm3+ doped tellurite glasses[J]. Journal of Non-Crystalline Solids, 2019, 507: 19-29.[2]. Langar A, Bouzidi C, Elhouichet H, et al. Er-Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 μm broadband optical amplifiers[J]. Journal of Luminescence, 2014, 148: 249-255.[3]. Wang Jinhang. Preparation and Properties of Er3+/Yb3+ Co-doped Superphosphate/Phosphosilicate Glass [D]. Beijing: Master Dissertation of Beijing University of Technology, 2020: 1-3(in Chinese).王锦航. Er3+/Yb3+共掺超磷酸盐/磷硅酸盐玻璃的制备及其性能研究[D]. 北京: 北京工业大学硕士论文, 2020: 1-3.[4]. Luo Juping, He You. Analysis on the development of artillery 1.5x μm safety laser rangefinder[J]. Infrared and Laser Engineering, 2008, 37: 242-244(in Chinese).罗举平, 贺有. 开发炮兵1.5x μm安全型激光测距机浅析[J]. 红外与激光工程, 2008, 37: 242-244.[5]. Dan H K, Ty N M, Nga V H, et al. Broadband flat near-infrared emission and energy transfer of Pr3+-Er3+-Yb3+ tri-doped niobate tellurite glasses[J]. Journal of Non-Crystalline Solids, 2020, 549: 120335.[6]. Ding J L, Li C Y, Zhu L Q, et al. Pr3+/Tm3+/Er3+ tri-doped tellurite glass with ultra-broadband luminescence in the optical communication band[J]. Ceramics International, 2022, 48(6): 8779-8782.[7]. Hou G N, Cao L J, Zhang C M, et al. Improvement of ultra-broadband near-infrared emission in Nd3+-Er3+-Pr3+ tri-doped tellurite glasses[J]. Optical Materials, 2021, 111: 110547.[8]. Shen S, Naftaly M, Jha A. Tungsten-tellurite-a host glass for broadband EDFA[J]. Optics Communications, 2002, 205(1): 101-105.[9]. Wu L B, Huang B, Yang F J, et al. Enhanced 1.53 μm band fluorescence in Er3+/Ce3+ codoped tellurite glasses containing Ag NPs[J]. Optical Materials, 2015, 43: 42-48.[10]. Pandey A, Som S, Kumar V, et al. Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass[J]. Sensors and Actuators B: Chemical, 2014, 202: 1305-1312.[11]. Zhang Y, Xiao Z, Lei H, et al. Er3+/Yb3+ co-doped tellurite glasses for optical fiber thermometry upon UV and NIR excitations[J]. Journal of Luminescence, 2019, 212: 61-68.[12]. El-Mallawany R, Hager I Z, Mahfouz H, et al. Physical and mechanical investigations for bismuth tungsten tellurite glasses[J]. Journal of Alloys and Compounds, 2021, 883: 160802.[13]. Yuan Jian. Rare earth doped tellurite glass fiber in 2.0 μm band and its spectral and laser experiments [D]. Guangzhou: Doctorial Dissertation of South China University of Technology, 2015: 26-29(in Chinese).袁健. 2.0 μm波段稀土掺杂碲酸盐玻璃光纤及其光谱和激光实验研究[D]. 广州: 华南理工大学, 2015: 26-29.[14]. Yuan J, Yang Q, Chen D D, et al. Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier[J]. Journal of Applied Physics, 2012, 111(10): 103511.[15]. Zhang Y, Xiao Z, Lei H, et al. Er3+/Yb3+ co-doped tellurite glasses for optical fiber thermometry upon UV and NIR excitations[J]. Journal of Luminescence, 2019, 212: 61-68.[16]. Zhang Y, Lei H, Li G N, et al. Yb3+/Er3+ co-doped transparent tellurite glass-ceramic for enhanced upconversion luminescence[J]. Optical Materials, 2020, 99: 109552.[17]. Tabanli S, Eryurek G. Optical investigation of Er3+ and Er3+/Yb3+ doped zinc-tellurite glass for solid-state lighting and optical thermometry[J]. Sensors and Actuators A: Physical, 2019, 285: 448-455. |