量子电子学报 ›› 2024, Vol. 41 ›› Issue (3): 553-564.doi: 10.3969/j.issn.1007-5461.2024.03.015

• "LIBS 关键技术与应用"专辑 • 上一篇    

高重频激光诱导击穿光谱结合卷积神经网络的岩石岩性分析研究

杨妙 1*, 战晔 2, 付钰婷 3, 杨光 3   

  1. ( 1 长春汽车职业技术大学电气工程学院, 吉林 长春 130013; 2 空军航空大学航空作战勤务学院, 吉林 长春 130012; 3 吉林大学仪器科学与电气工程学院, 吉林 长春 130061 )
  • 收稿日期:2023-11-30 修回日期:2024-02-01 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: E-mail: yangmiao2003@163.com E-mail:E-mail: yangmiao2003@163.com
  • 作者简介:杨 妙 ( 1984 - ), 女, 陕西泾阳人, 硕士,副教授, 主要从事光谱检测和仪器仪表等方面的研究。E-mail: yangmiao2003@163.com
  • 基金资助:
    国家自然科学基金项目 (62275099)

Lithology analysis of rock with high repetition frequency laser⁃induced breakdown spectroscopy combined with convolutional neural network

YANG Miao 1*, ZHAN Ye 2, FU Yuting 3, YANG Guang 3   

  1. ( 1 College of Electrical Engineering, Changchun Technical University of Automobile, Changchun 130013, China; 2 College of Aviation Combat & Service, Aviation University of Air Force, Changchun, 130012, China; 3 College of Instrumentation & Electrical Engineering, Jilin University, Changchun, 130061, China )
  • Received:2023-11-30 Revised:2024-02-01 Published:2024-05-28 Online:2024-05-28

摘要: 地质分析能为地质资源勘探提供重要的信息和依据。激光诱导击穿光谱 (LIBS) 技术是一种快速、准确和原 位的岩石分析判别方法。将高重频LIBS技术应用于岩石样品的岩性分析, 再结合卷积神经网络 (CNN) 模型进行 分类, 不仅解决了传统大能量单脉冲激光器体积大、重量沉等问题, 还克服了机器学习需要人为调整参数的不足, 同时也顺应LIBS技术逐渐向着便携化、小型化、精确化以及智能化的发展趋势。本研究利用高重频LIBS实验平台 对岩石压片样品进行光谱采集, 根据岩石的产地和岩性, 将岩石样品分为5类和9类, 结合1D-CNN和ResNet34卷 积神经网络模型对岩石进行分类识别。研究结果表明, 针对两种样品分类情况, 平均分类识别准确率分别达到 99.43%和97.14%, 高重频LIBS与CNN模型结合可以实现良好的岩石分类结果。最后基于MATLAB App Designer 开发了用于岩石岩性分析的系统软件, 实现了对岩石的快速分类, 提高了地质勘查效率。

关键词: 光谱学, 岩石分类, 高重频激光诱导击穿光谱, 卷积神经网络

Abstract: Geological analysis can provide important information and basis for geological resource exploration. Laser-induced breakdown spectroscopy (LIBS) can provide a rapid, accurate, and in-situ discriminant method for rock analysis. The application of high repetition rate LIBS technology to lithology analysis of rock samples, combined with the convolutional neural network (CNN) model for classification, not only solves the problems of large volume and heavy weight of traditional high-energy single-pulse lasers, but also overcomes the shortcomings of poor universality of traditional machine learning algorithm models, and also comforms to the development trend of LIBS technology towards portability, miniaturization, precision and intelligence. A high repetition rate LIBS experimental platform is used to collect the spectra of rock compression samples, and the rock samples are divided into 5 and 9 categories according to the origin and lithology of the rocks, and then 1D-CNN and ResNet34 convolutional neural network models are used to classify them. The results show that the combination of high repetition frequency LIBS and CNN can achieve rock classification, with the optimal results of 99.43% and 97.14% respectively. Finally, based on MATLAB App Designer, a system software for rock lithology analysis is developed, which realizes the rapid real-time classification of rocks and greatly improves the efficiency of geological exploration.

Key words: spectroscopy, rock classification, high repetition rate laser-induced breakdown spectroscopy, convolutional neural network

中图分类号: