| [1] Essen L, Parry J V L. An atomic standard of frequency and time interval: a C?sium resonator [J]. Nature, 1955, 176(4476): 280-282.[2] Mungall A G, Bailey R, Daam H. The canadian Cesium beam frequency standard [J]. Metrologia, 1966, 2(3): 98-104.[3] Heavner T P, Donley E A, Levi F, et al. First accuracy evaluation of NIST-F2 [J]. Metrologia, 2014, 51(3): 174-182.[4] Dehmelt H G. Monoion oscillator as potential ultimate laser frequency standard [J]. IEEE Transactions on Instrumentation and Measurement, 1982, IM-31(2): 83-87.[5] Courtillot I, Quessada A, Kovacich R P, et al. Clock transition for a future optical frequency standard with trapped atoms [J]. Physical Review A, 2003, 68(3): 030501.[6] Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock [J]. Nature, 2005, 435(7040): 321-324.[7] Ludlow A D, Boyd M M, Zelevinsky T, et al. Systematic Study of the 87Sr Clock Transition in an Optical Lattice [J]. Physical Review Letters, 2006, 96(3): 033003.[8] Targat R L, Baillard X, Fouche M, et al. Accurate Optical Lattice Clock with 87Sr Atoms [J]. Physical Review Letters, 2006, 97(13): 130801.[9] Origlia S, Pramod M S, Schiller S, et al. Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms [J]. Physical Review A, 2018, 98(5): 053443.[10] McGrew W F, Zhang X, Fasano R J, et al. Atomic clock performance enabling geodesy below the centimetre level [J]. Nature, 2018, 564(7734): 87-90.[11] Takamoto M, Ushijima I, Das M, et al. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications [J]. Comptes Rendus Physique, 2015, 16(5): 489-498.[12] Goti I, Condio S, Clivati C, et al. Absolute frequency measurement of a Yb optical clock at the limit of the Cs fountain [J]. Metrologia, 2023, 60(3): 035002.[13] Luo L M, Qiao H, Ai D, et al. Absolute frequency measurement of an Yb optical clock at the 10-16 level using International Atomic Time [J]. Metrologia, 2020, 57(6): 065017.[14] Kim H, Heo M Sun, Park C Y, et al. Absolute frequency measurement of the 171Yb optical lattice clock at KRISS using TAI for over a year [J]. Metrologia, 2021, 58(5): 055007.[15] Zhang A, Xiong Z X, Chen X T, et al. Ytterbium optical lattice clock with instability of order 10-18 [J]. Metrologia, 2022, 59(4): 065009.[16] Poli N, Barber Z W, Lemke N D, et al. Frequency evaluation of the doubly forbidden 1S0-3P0 transition in bosonic 174Yb [J]. Physical Review A, 2008, 77(5): 050501(R).[17] Yamanaka K, Ohmaé N, et al. Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit [J]. Physical Review Letters, 2015, 114(23): 230801.[18] McFerran J J, Yi L, Mejri S, et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7×10-15 [J]. Physical Review Letters, 2012, 108(18): 183004.[19] Tyumenev R, Favier M, Bilicki S, et al. Comparing a mercury optical lattice clock with microwave and optical frequency standards [J]. New Journal of Physics, 2016, 18(11): 113002.[20] Golovizin A, Fedorova E S, Tregubov D, et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift [J]. Nature Communications, 2019, 10(1):1724.[21] Golovizin A, Tregubov D, Fedorova E S, et al. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts [J]. Nature Communications, 2021, 12(1):5171.[22] Wu F F, Tang Y B, Shi T Y, et al. Magic-intensity trapping of the Mg lattice clock with light shift suppressed below 10-19 [J]. Physical Review A, 2020, 101(5): 053414. [23] Yamaguchi A, Safronova M S, Gibble K, et al. Narrow-line cooling and determination of the magic wavelength of Cd [J]. Physical Review Letters, 2019, 123(11): 113201.[24] Wu L, Wang X, Wang T, et al. Be optical lattice clocks with the fractional Stark shift up to the level of 10-19 [J]. New Journal of Physics, 2023, 25(4): 043011.[25] Keller J, Ignatovich S, Webster S A, et al. “Simple vibration-insensitive cavity for laser stabilization at the 10-16 level [J]. Applied Physics B, 2013, 116(1): 203-210. [26] Matei D G, Legero T, Grebing C, et al. A second generation of low thermal noise cryogenic silicon resonators [J]. Journal of Physics Conference Series, 2017, 723(1): 012031. [27] Zhang W, Robinson J M, Sonderhouse L, et al. “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K [J]. Physical Review Letters, 2017, 119(24): 243601.[28] Lemonde P, Wolf P. Optical lattice clock with atoms confined in a shallow trap [J]. Physical Review A, 2005, 72(3): 033409.[29] Bothwell T, Kennedy C J, Aeppli A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample [J]. Nature, 2022, 602(7897): 420-424.[30] Aeppli A, Chu A J, Bothwell T, et al. Hamiltonian engineering of spin-orbit-coupled fermions in a Wannier-Stark optical lattice clock [J]. Science Advances, 2022, 8(41): eadc9242.[31] Oelker E, Hutson R B, Kennedy C J, et al. Demonstration of 4.8×10-17 stability at 1?s for two independent optical clocks [J]. Nature Photonics, 2019, 13(10): 714-719. [32] Aeppli A, Kim K, Warfield W, et al, Clock with 8×10-19 systematic uncertainty [J]. Physical Review Letters, 2024, 133(3): 023401.[33] Dimarcq N, Gertsvolf M, Mileti G, et al. Roadmap towards the redefinition of the second [J]. Metrologia, 2024, 61(1): 012001.[34] Grotti J, Koller S, Vogt S, et al. Geodesy and metrology with a transportable optical clock [J]. Nature Physics, 2018, 14(5): 437-441.[35] Grotti J, Nosske I, Koller S B, et al. Long-distance chronometric leveling with a portable optical clock [J]. Physical Review Applied, 2024, 21(6): L061001. [36] Takano T, Takamoto M, Ushijima I, et al. Geopotential measurements with synchronously linked optical lattice clocks [J]. Nature photonics, 2016, 10(10): 662-666.[37] Schwarz R, D?rscher S, Al-Masoudi A, et al. Long term measurement of the 87Sr clock frequency at the limit of primary Cs clocks [J]. Physical Review Research, 2020, 2(3): 033242.[38] Kolkowitz S, Pikovski I, Langellier N, et al. Gravitational wave detection with optical lattice atomic clocks [J]. Physical Review D, 2016, 94(12): 1240431.[39] Beloy K, Bodine M I, Bothwell T, et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network [J]. Nature, 2021, 591(7851): 564-569.[40] Nakamura T, Davila-Rodriguez J, Leopardi H, et al. Coherent optical clock down-conversion for microwave frequencies with 10-18 instability [J]. Science, 2020, 368(6493): 889-892.[41] Takamoto M, Ushijima I, Ohmae N, et al. Test of general relativity by a pair of transportable optical lattice clocks [J]. Nature Photonics, 2020, 14(7): 411-415.[42] Uzan J P . The fundamental constants and their variation: observational and theoretical status [J]. Review of Modern Physics, 2003, 75(2): 403-455.[43] Schwarz J H. Superstring theory [J]. Reports on Progress in Physics, 1987, 50(9): 1087. [44] Bailint D, Love A. Kaluza-Klein theories [J]. Physics Reports, 1982, 89(3): 223-322. [45] Yasuda M, Katori H. Lifetime measurement of the 3P2 metastable state of Strontium atoms [J]. Physical Review Letters, 2004, 92(15): 153004.[46] D?rscher S, Schwarz R, Al-Masoudi A, et al. Lattice-induced photon scattering in an optical lattice clock [J]. Physical Review A, 2018, 97(6): 063419.[47] Hettrich M, Ruster T, Kaufmann H, et al. Measurement of dipole matrix elements with a single trapped ion [J]. Physical Review Letters, 2015, 115(14): 143003.[48] Lu X T, Guo F, Liu Y Y, et al. Determining the lifetime of the 5s5p 3Po 0 metastable state in 87Sr from the electric dipole matrix element [J]. Physical Review Applied, 2024, 21(2): 024042.[49] Lu X T, Guo F, Wang Y B, et al. MF-dependent hyperfine-induced 5s5p 3Po 0 –5s2 1S0 clock transition ratesin an external magnetic field for 87Sr [J]. Physical Review A, 2023, 108(1): 012820.[50] Westergaard P G, Lodewyck J, Lorini L, et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10-17 level [J]. Physical Review Letters, 2011, 106(21): 210801.[51] Lu X T, Zhou C H, Li T, et al. Synchronous frequency comparison beyond the Dick limit based on dual-excitation spectrum in an optical lattice clock [J]. Applied Physics Letters, 2020, 117(23): 231101.[52] Blatt S, Thomsen J W, Campbell G K, et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock [J]. Physical Review A, 2009, 80(5): 052703.[53] Boyd M M, Zelevinsky T, Ludlow A D, et al. Nuclear spin effects in optical lattice clocks [J]. Physical Review A, 2007, 76(2): 022510.[54] Lu B Q, Wang Y B, Guo Y, et al. Experimental determination of the Landé g-factors for 5s2 1S and 5s5p 3P states of the 87Sr atom [J]. Chinese Physics Letters, 2018, 35(4): 043203.[55] Zhou Y H, Zhang X F, Wang T. Density shift of optical lattice clocks via the multiband sampling exact diagonalization method [J]. Physical Review A, 2023, 108(3): 033304.[56] Martin M J, Bishof M, Swallows M D, et al. A quantum many-body spin system in an optical lattice clock [J]. Science, 2013, 341(6146): 632-636.[57] Zhang X, Bishof M, Bromley S L, et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism [J]. Science, 2014, 345(6203): 1467-1473.[58] Goban A, Hutson R B, Marti G E, et al. Emergence of multi-body interactions in a fermionic lattice clock [J]. Nature, 2018, 563(7731): 369-373.[59] Middelmann T, Lisdat C, Falke S, et al. Tackling the blackbody shift in a strontium optical lattice clock [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7): 2550-2557.[60] Ushijima I, Takamoto M, Das M, et al. Cryogenic optical lattice clocks [J]. Nature Photonics, 2015, 9(3): 185-189. |