量子电子学报 ›› 2025, Vol. 42 ›› Issue (4): 437-449.doi: 10.3969/j.issn.1007-5461.2025.04.001

• “量子精密测量与应用” 专辑 • 上一篇    下一篇

基于光晶格原子钟的量子精密测量 (特邀, 封面文章)

卢晓同 1,2, 常 宏 1,2,3*   

  1. 1 中国科学院国家授时中心, 陕西 西安 710600; 2 中国科学院大学天文与空间科学学院, 北京 100049; 3 合肥国家实验室, 安徽 合肥 230088
  • 收稿日期:2024-12-24 修回日期:2025-02-24 出版日期:2025-07-28 发布日期:2025-07-28
  • 通讯作者: E-mail: changhong@ntsc.ac.cn E-mail:E-mail: changhong@ntsc.ac.cn
  • 作者简介:卢晓同 ( 1994 - ), 四川遂宁人, 博士, 副研究员, 主要从事光晶格原子钟、原子物理和光与原子相互作用等方面的研究。 E-mail: LuxiaotongNTSC@163.com
  • 基金资助:
    国家自然科学基金 (12203057), 中国科学院战略性先导科技专项 (B类) (XDB35010202)

Quantum precision measurement based on optical lattice atomic clocks

LU Xiaotong 1,2 , CHANG Hong 1,2,3*   

  1. 1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; 2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Hefei National Laboratory, Hefei 230088, China
  • Received:2024-12-24 Revised:2025-02-24 Published:2025-07-28 Online:2025-07-28

摘要: 光晶格原子钟凭借其超高频率分辨的钟跃迁探测、极高的频率稳定度和准确度、光频域的钟跃迁、纯净的原 子初态制备和超长的量子态相干操控时间等特点, 在量子精密测量领域发挥着重要作用。利用光晶格原子钟钟跃迁 频率对电场、磁场、温度和重力加速度等物理量敏感的特点, 可以通过设计实验来定量确定待测物理量与钟跃迁频率 以及跃迁速率的关系, 并结合相关理论推导出待测量。本文综述了光晶格原子钟在量子精密测量方面的典型应用, 包括时间频率测量、广义相对论的检验、基本物理常数随时间变化的测量和原子物理研究等。

关键词: 量子信息, 光晶格原子钟, 量子精密测量, 光与原子相互作用, 光晶格

Abstract: Optical lattice atomic clocks play a crucial role in the field of quantum precision measurement due to their excellent characteristics, such as ultra-high frequency resolution for clock transition detection, extremely high frequency stability and accuracy, optical frequency domain clock transitions, pure atomic initial state preparation, and ultra-long quantum state coherence time. Taking advantage of the sensitivity of the clock transition frequency of optical lattice atomic clocks to physical quantities such as electric field, magnetic field, temperature, and gravitational acceleration, experiments can be designed to quantitatively determine the relationship between the quantities to be measured and the clock transition frequency and transition rate, and then combining with relevant theoretical frameworks to infer the value of the quantities being measured. This paper reviews the typical applications of optical lattice atomic clocks in quantum precision measurements, including time-frequency measurement, the test of general relativity, the measurement of the variation of fundamental physical constants with time, and atomic physics research.

Key words: quantum information, optical lattice atomic clock, quantum precision measurement, lightatom interaction, optical lattice

中图分类号: