[1] |
Barrett J, Colbeck R, Kent A. Memory attacks on device-independent quantum cryptography [J]. Physical Review Letters,
|
20 |
13, 110(1): 010503.
|
[2] |
Prevedel T, Walther P, Tiefenbacher F. High-speed linear optics quantum computing using active feed-forward [J]. Nature,
|
20 |
07, 445(5346): 65-69.
|
[3] |
Cavalcanti D, Ac´ın A, Brunner N, et al. All quantum states useful for teleportation are nonlocal resources [J]. Physical Review
|
|
A, 2013, 87(4): 042104.
|
[4] |
Pironio S, Acin A, Massar S, et al. Random numbers certified by Bell’s theorem [J]. Nature, 2010, 464(7291): 1021-1024.
|
[5] |
Bell J. On the Einstein-Podolsky-Rosen paradox [J]. Physics, 1964, 1(3): 195-200.
|
[6] |
Clauser J, Horne M, Shimony A, et al. Proposed experiment to test local hidden-variable theories [J]. Physical Review Letters,
|
19 |
69, 23(15): 880-884.
|
[7] |
Fine A. Hidden variables, joint probability, and the Bell inequalities [J]. Physical Review Letters, 1982, 48(5): 291-295.
|
[8] |
Clauser J, Horne M. Experimental consequences of objective local theories [J]. Physical Review D, 1974, 10(2): 526-535.
|
[9] |
Garg A, Mermin N. Correlation inequalities and hidden variables [J]. Physical Review Letters, 1982, 49(17): 1220-1223.
|
[10] |
Pitowsky I, Svozil K. New optimal tests of quantum nonlocality [J]. Physical Review A, 2001, 64(1): 014102.
|
[11] |
Brunner N, Gisin N. Partial list of bipartite Bell inequalities with four binary settings [J]. Physics Letters A, 2008, 372(18):
|
31 |
62-3167.
|
[12] |
Cruzeiro E, Gisin N. Complete list of tight Bell inequalities for two parties with four binary settings [J]. Physical Review A,
|
20 |
19, 99(2): 022104.
|
[13] |
Collins D, Gisin N. A relevant two qubit Bell inequality inequivalent to the CHSH inequality [J]. Journal of Physics A, 2004,
|
37 |
(5): 1775-1787.
|
[14] |
Pal K, V´ertesi T. Quantum bounds on Bell inequalities [J]. Physical Review A, 2009, 79(2): 022120.
|
[15] |
Navascues N, Pironio S, Ac´ın A. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations
|
[J] |
New Journal of Physics, 2008, 10(7): 073013.
|
[16] |
Zhao J Q, Cao L Z, Wang X Q, et al. Experimental investigation of different Bell-type inequality in three-qubit Greenberger-
|
|
Horne-Zeilinger states [J]. Acta Physica Sinica, 2012, 61(17): 170301.
|
|
赵加强, 曹连振, 王晓芹, 等. 三光子GHZ 态中不同Bell 型不等式的实验研究[J]. 物理学报, 2012, 61(17): 170301.
|
[17] |
Zhao J Q, Cao L Z, Lu H X, et al. Bell-type inequality and tripartite nonlocality in three-qubit GHZ-class states [J]. Acta
|
|
Physica Sinica, 2013, 62(12): 120301.
|
|
赵加强, 曹连振, 逯怀新, 等. 三比特类GHZ 态的Bell 型不等式和非定域性[J]. 物理学报, 2013, 62(12): 120301.
|
[18] |
Ekert A. Quantum cryptography based on Bell’s theorem [J]. Physical Review Letters, 1991, 67(6): 661-663.
|
[19] |
Zhao J Q, Cao L Z, Yang Y, et al. Nonlocality and robustness in two-photon entangled system [J]. Chinese Journal of Quantum
|
|
Electronics, 2018, 35(4): 451-454.
|
|
赵加强, 曹连振, 杨阳等. 双光子纠缠体系中的非定域性和稳健性[J]. 量子电子学报, 2018, 35(4): 451-454.
|
[20] |
Yao J X, Gong L Y. Influence of quantum entanglement and quantum operation on superiority of CHSH quantum game [J].
|
|
Chinese Journal of Quantum Electronics, 2015, 32(5): 581-585.
|
|
姚嘉祥, 巩龙延. 量子纠缠和量子操作对CHSH 量子博弈优越性的影响[J]. 量子电子学报, 2015, 32(5): 581-585.
|
[21] |
Su X Q, Guo G C. Quantum communication and quantum computation [J]. Chinese Journal of Quantum Electronics, 2014,
|
21 |
(6): 706-718.
|
|
苏晓琴, 郭光灿. 量子通信与量子计算[J]. 量子电子学报, 2004, 21(6): 706-718.
|
[22] |
Laskowski W, Paterek T, Zukowski M, et al. Tight multipartite Bell’s inequalities involving many measurement settings [J].
|
|
Physical Review Letters, 2004, 93(20): 200401.
|
[23] |
Son W, Lee J, Kim M. Generic Bell inequalities for multipartite arbitrary dimensional systems [J]. Physical Review Letters,
|
20 |
06, 96(6): 060406.
|
[24] |
Ac´ın A, Gill R, Gisin N. Optimal Bell tests do not require maximally entangled states [J]. Physical Review Letters, 2005,
|
95 |
(21): 210402.
|
[25] |
Froissart M. Constructive generalization of Bell’s inequalities [J]. IL Nuovo Cimento B, 1981, 64(2): 241-251.
|
[26] |
Ruan L, Dai W, Win M. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels [J]. Physical
|
|
Review A, 2018, 97(5): 052332.
|