[1]. Bennett, C.H. Quantum key distribution and coin tossing. in International Conference on Computers. 1984. [2]. Qin, S., et al., Distributed secret sharing scheme based on the high-dimensional rotation paraboloid. Journal of Information Security and Applications, 2021. 58: p. 102797. [3]. Chang, L.W., et al., Multi-layer Quantum Secret Sharing Based on GHZ States. Artificial Intelligence and Security, 6th International Conference, ICAIS 2020, Hohhot, China, July 17–20, 2020, Proceedings, Part I, 2020. [4]. Hillery, M., V. Nek and A. Berthiaume, Quantum secret sharing. quant-ph/9806063, 1999. 59(3): p. 1829-1834. [5]. Cui, Z.X., et al., Measurement-device-independent quantum key distribution with hyper-encoding. Science China: Physics, Mechanics and Astronomy, 2019. 62(11). [6]. Wang, B., et al., A kind of improved quantum key distribution scheme. Optik - International Journal for Light and Electron Optics, 2021. 235: p. 166628. [7]. Kurt, G.K., et al., A Key Verification Protocol for Quantum Key Distribution. IEEE Access, 2019. PP(99): p. 1-1. [8]. Bostroem, K., T. Felbinger and H. Hoffmann, Secure direct communication with a quantum one-time pad. Physics, 2004. 69(5): p. 521-524. [9]. Li, T. and G.L. Long, Quantum secure direct communication based on single-photon Bell-state measurement. New Journal of Physics, 2020. 22(6): p. 063017 (10pp).[10]. Bebrov, G. and R. Dimova, Efficient Quantum Secure Direct Communication Protocol Based on Quantum Channel Compression. International Journal of Theoretical Physics, 2020. 59(2): p. 1-10.[11]. Huang, Z. and H. Situ, Protection of quantum dialogue affected by quantum field. Quantum Information Processing, 2019. 18(1).[12]. Zhang, L., et al., A Controller-Independent Quantum Dialogue Protocol with Four-Particle States. International Journal of Theoretical Physics, 2019. 58(6): p. 1927-1936.[13]. Saxena, A., K. Thapliyal and A. Pathak, Continuous variable controlled quantum dialogue and secure multiparty quantum computation. International Journal of Quantum Information, 2020. 18(7): p. 2050009.[14]. Yang, G. and Y. Wen, An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. Journal of Physics: A Mathematical & Theoretical, 2009.[15]. Yang, Y.G., W.F. Cao and Q.Y. Wen, Secure quantum private comparison. Physica Scripta, 2009. 80(6): p. 065002.[16]. Ye, T.Y. and C.Q. Ye, Measure-Resend Semi-Quantum Private Comparison Without Entanglement. International Journal of Theoretical Physics, 2018. 57(12): p. 3819-3834.[17]. Wen, et al., Quantum Private Comparison Protocol Based on Bell Entangled States. Communications in Theoretical Physics, 2012. 57(4): p. 583-583.[18]. Zhao-Xu, J. and Y. Tian-Yu, Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Information Processing, 2017. 16(7): p. 177.[19]. Wu, W.Q. and Y.X. Zhao, Quantum private comparison of size using d-level Bell states with a semi-honest third party. Quantum Information Processing, 2021. 20(4).[20]. Liu, W. and Y.B. Wang, Quantum Private Comparison Based on GHZ Entangled States. International Journal of Theoretical Physics, 2012. 51(11): p. 3596-3604.[21]. Huang, et al., Multi-Party Quantum Private Comparison Protocol with an Almost-Dishonest Third Party using GHZ States. International Journal of Theoretical Physics: A Journal of Original Research and Reviews in Theoretical Physics and Related Mathematics, Dedicated to the Unification of Physics, 2016.[22]. Ji, Z., et al., Greenberger-Horne-Zeilinger-based quantum private comparison protocol with bit-flipping. Physica Scripta, 2021. 96(1): p. 015103 (12pp).[23]. Zhang, W.W., D. Li and Y.B. Li, Quantum Private Comparison Protocol with W States. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014. 53(5): p. 1723-1729.[24]. Sun, Z. and D. Long, Quantum Private Comparison Protocol Based on Cluster States. International Journal of Theoretical Physics, 2013. 52(1): p. 212-218.[25]. Zhou and Ming-Kuai, Improvements of Quantum Private Comparison Protocol Based on Cluster States. International Journal of Theoretical Physics, 2018. 57(1): p. 42-47.[26]. Ye, T.Y. and Z.X. Ji, Two-Party Quantum Private Comparison with Five-Qubit Entangled States. International Journal of Theoretical Physics, 2017. 56(5): p. 1517-1529.[27]. Wen, L., et al., New Quantum Private Comparison Protocol Using χ-Type State. International Journal of Theoretical Physics, 2012. 51(6): p. 1953-1960.[28]. Hong-Ming and Pan, Quantum Private Comparison Based on χ-Type Entangled States. International Journal of Theoretical Physics, 2017. 56(10): p. 3340-3347.[29]. Quantum Private Comparison of Equal Information Based on Highly Entangled Six-Qubit Genuine State. Communications in Theoretical Physics, 2016.[30]. Michel, et al., Quantum Key Distribution with Classical Bob. Physical Review Letters, 2007. 99(14): p. 140501-140501.[31]. Yin, A. and T. Chen, Authenticated Semi-Quantum Secret Sharing Based on GHZ-Type States. International Journal of Theoretical Physics, 2021. 60(1): p. 265-273.[32]. Tsai, C., C. Yang and J. Lin, Multiparty Mediated Semi-Quantum Secret Sharing Protocol. arXiv.org, 2021.[33]. Tsai, C., C. Yang and N. Lee, Semi-quantum secret sharing protocol using W-state. Modern Physics Letters A, 2019. 34(27): p. 1950213.[34]. Tsai, C., C. Yang and N. Lee, Lightweight mediated semi-quantum key distribution protocol. Modern Physics Letters A, 2019. 34(34): p. 1950281.[35]. Lin, P.H., C.W. Tsai and T. Hwang, Mediated Semi‐Quantum Key Distribution Using Single Photons. Annalen der Physik, 2019. 531(8): p. 1800347.[36]. Hajji, H. and M.E. Baz, Qutrit-based semi-quantum key distribution protocol. Quantum Information Processing, 2021.[37]. Rong, Z., et al., Mediated semi-quantum secure direct communication. Quantum Information Processing, 2021. 20(2).[38]. Sun, Y., et al., Two semi-quantum secure direct communication protocols based on Bell states. Modern Physics Letters A, 2019.[39]. Rong, Z., D. Qiu and X. Zou, Semi-Quantum Secure Direct Communication Using Entanglement. International Journal of Theoretical Physics, 2020. 59(5410).[40]. Lin, P., T. Hwang and C. Tsai, Efficient semi-quantum private comparison using single photons. Quantum Information Processing, 2019. 18(7).[41]. Jiang, L., Semi-quantum private comparisonbased on Bell states. Quantum Information Processing, 2020. 19(6).[42]. Zhou, N., et al., Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Information Processing, 2021. 20(3).[43]. Yan, L., et al., Semi-quantum private comparison protocol with three-particle G-like states. Quantum Information Processing, 2021. 20(1).[44]. Chou, W.H., T. Hwang and J. Gu, Semi-quantum private comparison protocol under an almost-dishonest third party. arXiv preprint arXiv:1607.07961, 2016.[45]. Xu, Q., et al., Quantum Private Comparison Protocol Based on Four-Particle GHZ States. International Journal of Theoretical Physics, 2020. 59(6): p. 1798-1806.[46]. Chou, W.H., T. Hwang and J. Gu, Semi-quantum private comparison protocol under an almost-dishonest third party. arXiv preprint arXiv:1607.07961, 2016.[47]. Lin, P., T. Hwang and C. Tsai, Efficient semi-quantum private comparison using single photons. Quantum Information Processing, 2019. 18(7).[48]. Hong-Ming and Pan, Quantum Private Comparison Based on χ-Type Entangled States. International Journal of Theoretical Physics, 2017. 56(10): p. 3340-3347.[49]. Ye, T.Y. and C.Q. Ye, Measure-Resend Semi-Quantum Private Comparison Without Entanglement. International Journal of Theoretical Physics, 2018. 57(12): p. 3819-3834.[50]. Jiang, L., Semi-quantum private comparisonbased on Bell states. Quantum Information Processing, 2020. 19(6). |