Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (5): 617-632.doi: 10.3969/j.issn.1007-5461.2021.05.006
Previous Articles Next Articles
FANG Bo1,2, ZHAO Weixiong1∗, YANG Na’na1,2, WANG Chunhui1,3, ZHOU Hao1,2, ZHANG Weijun1,3
Received:
2021-04-30
Revised:
2021-06-08
Published:
2021-09-28
Online:
2021-09-28
CLC Number:
FANG Bo, ZHAO Weixiong∗, YANG Na’na, WANG Chunhui, ZHOU Hao, ZHANG Weijun, . Development and application of optical multi-pass cells[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 617-632.
[1] Chen W, Yi H, Wu T, et al. Photonic sensing of reactive atmospheric species [M]. Hoboken: John Wiley & Sons Ltd, Publication, 2017.[2] Schemshad J, Aminossadati S M, Kizil M S. A review of developments in near infrared methane detection based on tunable diode laser [J]. Sensors and Actuators B: Chemical, 2012, 171(172): 77-92.[3] Hodgkinson J, Tatam R. Optical gas sensing: a review [J]. Measurement Science and Technology, 2013, 24(1): 012004.[4] Kan R, Liu W, Zhang Y, et al. Absorption measurements of ambient methane with tunable diode laser [J]. Acta Physica Sinica, 2005, 54(4): 1927-1930.阚瑞峰, 刘文清, 张玉钧, 等. 可调谐二极管吸收光谱法测量环境空气中的甲烷含量 [J]. 物理学报, 2005, 54(4): 1927-1930.[5] Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy [J]. Optics Letters, 2018, 43(11): 2434-2437.[6] Manninen A, Tuzson B, Looser H, et al. Versatile multipass cell for laser spectroscopic trace gas analysis [J]. Applied Physics B, 2012, 109: 461-466.[7] Tuzson B, Mangold M, Looser H, et al. Compact multipass optical cell for laser spectroscopy [J]. Optics Letters, 2013, 38(3): 257-259.[8] Mangold M, Tuzson B, Hundt M, et al. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis [J]. Journal of the Optical Society of America A, 2016, 33(5): 913-918.[9] Tang Y, Liu W, Kan R, et al. Measurements of NO and CO inShanghai urban atmosphere by suing quantum cascade lasers [J]. Optics Express, 2011, 19(21): 20224-20232.[10] Fried A, Henry B, Wert B, et al. Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies [J]. Applied Physics B, 1998, 67: 317-330.[11] Wert B P, Fried A, Rauenbuehler S, et al. Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements [J]. Journal of Geophysical Research, 2003, 108(D12): 4350.[12] Stepanov E V, Zyrianov P V, Miliaev V A. Single-breath NO detection with tunable diode lasers for pulmonary disease diagnosis [J]. Proceedings of SPIE, 1999, 3829: 103-109.[13] Namjou K, Roller C B, Reich T E, et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy [J]. Applied Physics B, 2006, 85: 427-435.[14] K?hring M, Huang S, Jahjah M, et al. QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells [J]. Applied Physics B, 2014, 117: 445-451.[15] Tarsitano C G, Webster C R. Multilaser Herriott cell for planetary tunable laser spectrometers [J]. Applied Optics, 2007, 46(28): 6923-6935.[16] Webster C R, Mahaffy P R. Determing the local abundance of Martian methane and its’ 13C/12C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission [J]. Planetary and Space Science, 2011, 59: 271-283.[17] Mahaffy P R, Webster C R, Cabane M, et al. The sample analysis at Mars investigation an d instrument suite [J]. Space Science Reviews, 2012, 170: 401-478.[18] Webster C R, Mahaffy P R, Atreya S K, et al. Mars methane detection and variability at gale crater [J]. Science, 2014, 1261713.[19] Zhang L, Wang F, Yu L, et al. The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1639-1642.张立芳, 王飞, 俞李斌, 等. 基于可调谐激光吸收光谱技术的脱硝过程中微量逃逸氨气检测实验研究 [J]. 光谱学与光谱分析, 2015,35(6): 1639-1642.[20] Hui A O, Fradet M, Okumura M, et al. Temperature dependence study of the kinetics and product yields of the HO2+CH3C(O)O2 reaction by direction of OH and HO2 radicals using 2f-IR wavelength modulation spectroscopy [J]. The Journal of Physical Chemistry A, 2019, 123: 3655-3671.[21] White J. Long optical paths of large aperture [J]. Journal of the Optical Society of America A, 1942, 32: 285-288.[22] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523-526.[23] McManus J B, Kebabian P L, Zahniser M S. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy [J]. Applied Optics, 1995, 34(18): 3336-3348.[24] So S, Thomazy D. Novel spherical mirror multipass cells with improved spot pattern density for gas sensing [J]. Conference on Laser and Electro-Optics, 2012, CW3B.6.[25] Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58.[26] Tuzson B, Graf M, Ravelid J, et al. A compact QCL spectrometer for mobile, high-precision methane sensing aboard drone [J]. Atmospheric Measurement Techniques, 2020, 13: 4715-4726.[27] Zhou M, Yang Z, Sun L, et al. Acetylene sensing system based on wavelength modulation spectroscopy using a triple-row circular multi-pass cell [J]. Optics Express, 2020, 28(8): 11573-11582.[28] Cui R, Dong L, Wu H, et al. Three-dimensional printed miniature fiber-coupled multipass cells with dense spot patterns for ppb-level methane detection using a near-IR diode laser [J]. Analytical chemistry, 2020, 92: 13034-13041.[29] Feng S, Qiu X, Guo G, et al. Palm-Sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell [J]. Analytical Chemistry, 2021, 93: 4552-4558.[30] Webster C R, Flesch G J, Briggs R M, et al. Herriott cell spot imaging increases the performance of tunable laser spectrometers [J]. Applied Optics, 2021, 60(7): 1958-1965.[31] McManus J B. Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy [J]. Applied Optics, 2007, 46(4): 472-482.[32] Cui R, Wu H, Li S, et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration [J]. Optics Letters, 2019, 44(5): 1108-1111.[33] Cui R, Dong L, Wu H, et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns [J]. Applied Physics Letters, 2020, 116:091103.[34] Chernin S M. Promising version of the three-objective multipass matrix system [J]. Optics Express, 2002, 10(2): 104-107.[35] Silver J A. Simple dense-pattern optical multipass cells [J]. Applied Optics, 2005, 44(31): 6545-6556.[36] Wei N, Fang B, Zhao W, et al. Time-resolved laser-flash photolysis Faraday rotation spectrometer: a new tool for total OH reactivity measurement and free radical kinetics research [J]. Analytical Chemistry, 2020, 92: 4334-4339.[37] Wei N, Zhao W, Fang B, et al. Kinetic studies of reaction between OH radical and alkanes [J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 1050-1057.韦娜娜, 赵卫雄, 方波, 等. OH自由基与烷烃反应动力学研究 [J]. 分析化学, 2020, 48(8): 1050-1057.[38] Wang L, Deng L, Li B, et al. Low-pressure OH radicals reactor generated by dielectric barrier discharge from water vapor [J]. Physics of Plasmas, 2020, 27: 060701.[39] McManus J B, Zahniser M S, Nelson D. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number [J]. Applied Optics, 2010, 50(4): A74-A85.[40] Fang B, Yang N, Zhao W, et al. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels [J]. Applied Optics, 2019, 58(32): 8743-8750.[41] Glowacki D R, Goddard A, Seakins P W. Design and performance of a throughput-matched, zero-geometric-loss, modified three objective multipasss matrix system for FTIR spectrometry [J]. Applied Optics, 2007, 46(32): 7872-7883.[42] Glowacki D R, Goddard A, Hemavibool K, et al. Design of and initial results from a Highly Instruments Reactor for Atmospheric Chemistry (HIRAC)[J]. Atmospheric Chemistry and Physics, 2007, 7: 5371-2390.[43] Tchana F K, Willaert F, Landsheere X, et al. A new, low temperature long-pass cell for mid-infrared to terahertz spectroscopy and sysnchrotron radiation use [J]. Review of Scientific Instruments, 2013, 84: 093101.[44] Yang X, Zhao W, Tao L, et al. Measurement of volatile organic compounds in the smog chamber using a Chernin multipass cell [J]. Acta Physica Sinica, 2010, 59(7): 5154-5162.杨西斌, 赵卫雄, 陶玲, 等. 一种新型光学多通池系统应用于烟雾箱内挥发性有机化合物探测 [J]. 物理学报, 2010, 59(7): 5154-5162.[45] Cheng Y, Zhao W, Hu C, et al. Experimental study of the photochemical reaction in the smog chamber using a Chernin multipass cell [J]. Acta Optica Sinica, 2013, 33(5): 0830001.陈跃, 赵卫雄, 胡长进, 等. Chernin型多通池用于烟雾箱光化学反应过程的实验研究 [J]. 光学学报, 2013, 33(5): 0830001.[46] Zhao W, Fang B, Lin X, et al. Superconducting-magnet-based Faraday rotation spectrometer for real time in situ measurement of OH radicals at 106 molecule/cm3 level in an atmospheric simulation chamber [J]. Analytical Chemistry, 2018, 90: 3958-3964.[47] Fang Bo, Yang N, Wang C, et al. Detection of Nitric Oxide with Faraday rotation spectroscopy at 5.33 μm [J]. Chinese Journal of Chemical Physics, 2020, 33(1): 37-42.[48] Cuisset A, Hindle F, Mouret G, et al. Terahertz rotational spectroscopy of greenhouse gases using long interaction path-lengths [J]. Applied Sciences, 2021, 11: 1229.[49] Luo P. Long-wave mid-infrared time-resolved dual-comb spectroscopy of short-lived intermediates [J]. Optics Letters, 2020, 45(24): 6791-6794.[50] Luo P, Horng E. Simultaneous determination of transient free radicals and reaction kinetics by high-resolution time-resolved dual-comb spectroscopy [J]. Communications Chemistry, 2020, 3: 95. |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[13] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
[14] | YU Wei, ZHOU Zhuoyan, SUN Zhongmou, ZHANG Xinglong, LIU Yuzhu, . Real-time detection of the genus Rosa L. using LIBS technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 494-501. |
[15] | DING Bokun, SHAO Ligang, WANG Kunyang, CHEN Jiajin, WANG Guishi, LIU Kun, MEI Jiaoxu, TAN Tu, GAO Xiaoming, ∗. Research on real-time detection technology of dissolved gas in seawater based on off-axis integrating cavity [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||