[1] Deng Meilan, Sun Guoliang, Tang Yanchao, et al. Grey optimization method for ceramic formulation design[J]. China Ceramics, 2006, 7(42): 33-36.邓美兰, 孙国梁, 唐燕超, 等. 陶瓷配方设计的灰色优化方法[J]. 中国陶瓷, 2006, 7(42): 33-36.[2] Li Jiaju. Ceramic Technology[M]. Beijing: China Light Industry Press, 2003: 1-13.李家驹. 陶瓷工艺学[M]. 北京: 中国轻工业出版社, 2003: 1-13.[3] Guilherme A, Buzanich G, Radtke M, et al. Synchrotron micro-XRF with Compound Refractive Lenses (CRLs) for tracing key elements on Portuguese glazed ceramics[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(6): 966-974.[4] Knappett C, Pirrie D, Power M R, et al. Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN?): a pilot study on LB I pottery from Akrotiri, Thera[J]. Journal of Archaeological Science, 2011, 38(2): 219-232.[5] Stoner W D, Glascock M D. The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA-ICP-MS[J]. Journal of Archaeological Science, 2012, 39(8): 2668-2683.[6] Packer A P, Lariviere D, Li C, et al. Validation of an inductively coupled plasma mass spectrometry (ICP-MS) method for the determination of cerium, strontium, and titanium in ceramic materials used in radiological dispersal devices (RDDs)[J]. Analytica chimica acta, 2007, 588(2): 166-172.[7] Lu Fangqin, Hu Mingzhu, Liu Yang, et al. Detection of Soil Composition of Cultural Relics by Laser-induced Breakdown Spectroscopy[J]. Guangzhou Chemical Industry, 2022, 50(17): 120-123.卢芳琴, 胡明珠, 柳杨, 等. 利用激光诱导击穿光谱分析法检测文物的土体成分[J]. 广州化工, 2022, 50(17): 120-123.[8] Feng Z, Li S, Gu T, et al. Electrolyte Analysis in Blood Serum by Laser-Induced Breakdown Spectroscopy Using a Portable Laser[J]. Molecules, 2022, 27(19): 6438.[9] Yu Wei, Zhou Zhuoyan, Sun Zhongmou, et al. Real-time detection of the genus Rosa L. using LIBS technology[J]. Chinese Journal of Quantum Electronics, 2022, 39(04): 494-501.于玮, 周卓彦, 孙仲谋, 等. 激光诱导击穿光谱技术实时检测蔷薇属植物[J]. 量子电子学报, 2022, 39(04): 494-501.[10] Baudelet M, Yu J, Bossu M, et al. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy[J]. Applied physics letters, 2006, 89(16): 1-3.[11] Yang P, Zhou R, Zhang W, et al. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy[J]. Food chemistry, 2019, 272: 323-328.[12] Zhang ZiXu, Hou Jiajia, Feng Zhongqi, et al. A dual-pulse micro laser-induced breakdown spectroscopy for analysis of alloy steel[J]. Metallurgical Analysis, 2023, 43(07): 21-28.张子旭, 侯佳佳, 冯中琦, 等. 用于合金钢分析的微型双脉冲激光诱导击穿光谱技术[J]. 冶金分析, 2023, 43(07): 21-28.[13] Xu Shuixiu, Yu Ziyu, Qin Huaiqing, et al. Research and application of rapid analysis of coal quality by laser-induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2021, 38(06): 727-750.徐水秀, 喻子彧, 覃淮青, 等. 基于激光诱导击穿光谱的煤质快速分析研究及应用[J]. 量子电子学报, 2021, 38(06): 727-750.[14] Yao S, Mo J, Zhao J, et al. Development of a rapid coal analyzer using laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2018, 72(8): 1225-1233.[15] Tamura K, Ohba H, Saeki M, et al. Development of a laser-induced breakdown spectroscopy system using a ceramic micro-laser for fiber-optic remote analysis[J]. Journal of Nuclear Science and Technology, 2020, 57(10): 1189-1198.[16] Lu Y, Li Y, Li Y, et al. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 110: 63-69.[17] Rai N K, Rai A K. LIBS—an efficient approach for the determination of Cr in industrial wastewater[J]. Journal of hazardous materials, 2008, 150(3): 835-838.[18] Melessanaki K, Mateo M, Ferrence S C, et al. The application of LIBS for the analysis of archaeological ceramic and metal artifacts[J]. Applied surface science, 2002, 197: 156-163.[19] Ramil A, López A J, Yá?ez A. Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS)[J]. Applied Physics A, 2008, 92: 197-202.[20] Qi J, Zhang T, Tang H, et al. Rapid classification of archaeological ceramics via laser-induced breakdown spectroscopy coupled with random forest[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 288-293.[21] Cui X, Wang Q, Zhao Y, et al. Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN)[J]. Applied Physics B, 2019, 125: 1-12.[22] Zeng Qingdong, Yuan Mengtian, Zhu Zhiheng, et al. Research progress on portable laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(03): 470-486.曾庆栋, 袁梦甜, 朱志恒, 等. 便携式激光诱导击穿光谱最新研究进展[J]. 中国光学, 2021, 14(03): 470-486.[23] Yamamoto K Y, Cremers D A, Ferris M J, et al. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument[J]. Applied Spectroscopy, 1996, 50(2): 222-233.[24] Afgan M S, Hou Z, Wang Z. Quantitative analysis of common elements in steel using a handheld μ-LIBS instrument[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 1905-1915.[25] Senesi G S, Manzari P, Consiglio A, et al. Identification and classification of meteorites using a handheld LIBS instrument coupled with a fuzzy logic-based method[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1664-1675.[26] Ma?kiewicz A, Ratajczak W. Principal components analysis (PCA)[J]. Computers & Geosciences, 1993, 19(3): 303-342.[27] Tharwat A, Gaber T, Ibrahim A, et al. Linear discriminant analysis: A detailed tutorial[J]. AI communications, 2017, 30(2): 169-190.[28] Zhang D, Zhang Z, Zhang M, et al. Portable nanosecond laser for handheld laser-induced breakdown spectroscopy instruments[J]. Optical Engineering, 2023, 62(3): 036102-036102. |