Chinese Journal of Quantum Electronics
WANG Yanding, LIU Xiaomeng
Published:
2019-05-28
Online:
2019-05-14
WANG Yanding, LIU Xiaomeng. Research progress of stand-off Raman spectroscopy[J]. Chinese Journal of Quantum Electronics.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Raman C V, Krishnan K S. The Optical Analogue of the Compton Effect[J]. Nature, 1928, 121(121): 711–711. [2] Hirschfeld T. Range Independence of Signal in Variable Focus Remote Raman Spectrometry[J]. Applied Optics, 1974, 13(6): 1435–1437. [3] Angel S M, Kulp T J, Vess T M. Remote-Raman Spectroscopy at Intermediate Ranges Using Low-Power cw Lasers[J]. Applied Spectroscopy, 1992, 46(7): 1085–1091. [4] Aggarwal R L, Farrar L W, Polla D L. Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6‐mm‐thick sulfur specimen at 1500 m[J]. Journal of Raman Spectroscopy, 2011, 42(3): 461–464. [5] Pettersson A, Johansson I, Wallin S, et al. Near Real-Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55 m Distance[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(4): 297–306. [6] Moros J, Lorenzo J A, Novotný K, et al. Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting[J]. Journal of Raman Spectroscopy, 2013, 44(1): 121–130. [7] Butt N R, Nilsson M, Jakobsson A, et al. Classification of Raman Spectra to Detect Hidden Explosives[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 517–521. [8] Carter J C, Angel S M, Lawrencesnyder M, et al. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.[J]. Applied Spectroscopy, 2005, 59(6): 769–775. [9] Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2288–2298. [10] Sharma S K, Misra A K, Lucey P G, et al. Remote Pulsed Raman Spectroscopy of Inorganic and Organic Materials to a Radial Distance of 100 Meters[J]. Applied Spectroscopy, 2006, 60(8): 871–876. [11] Zachhuber B, Gasser C, Chrysostom E t.H., et al. Stand-Off Spatial Offset Raman Spectroscopy for the Detection of Concealed Content in Distant Objects[J]. Analytical Chemistry, 2011, 83(24): 9438–9442. [12] Sharma S K, Misra A K, Clegg S M, et al. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 80(1): 75–81. [13] Sharma S K, Angel S M, Ghosh M, et al. Remote Pulsed Laser Raman Spectroscopy System for Mineral Analysis on Planetary Surfaces to 66 Meters[J]. Applied Spectroscopy, 2002, 56(6): 699–705. [14] Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2281–2287. [15] Chung J H, Cho S G. Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials[J]. Bulletin of the Korean Chemical Society, 2014, 35(12): 3547–3552. [16] Gulati K K, Gambhir V, Reddy M N. Detection of Nitro-aromatic Compound in Soil and Sand using Time Gated Raman Spectroscopy[J]. Defence Science Journal, 2017, 67(5): 588–591. [17] Izake E L, Cletus B, Olds W, et al. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents[J]. Talanta, 2012, 94: 342–347. [18] Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote Detection of Hazardous Liquids Concealed in Glass and Plastic Containers[J]. IEEE Sensors Journal, 2010, 10(3): 693–698. [19] Gaft, Nagli. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739–1746. [20] Pettersson A, Wallin S, Östmark H, et al. Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection[A]. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV[C]. International Society for Optics and Photonics, 2010, 7664: 76641K. [21] Wu M, Ray M, Hang Fung K, et al. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6): 800–806. [22] Loeffen P, Maskall G, Bonthron S, et al. Spatially Offset Raman Spectroscopy (SORS) for Liquid Screening[J]. Proc SPIE, 2011, 8189: 81890C. [23] Fulton J. Remote detection of explosives using Raman spectroscopy[A]. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII[C]. International Society for Optics and Photonics, 2011, 8018: 80181A. [24] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection[J]. Applied Spectroscopy, 2016, 70(5): 861–873. [25] Bykov S V, Mao M, Gares K L, et al. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry[J]. Applied Spectroscopy, 2015, 69(8): 895–901. [26] Chen T, Madey J M J, Price F M, et al. Remote Raman Spectra of Benzene Obtained from 217 Meters Using a Single 532 nm Laser Pulse[J]. Applied Spectroscopy, 2007, 61(6): 624–629. [27] Zachhuber B, Ramer G, Hobro A, et al. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives[J]. Analytical and Bioanalytical Chemistry, 2011, 400(8): 2439–2447. [28] Misra A K, Sharma S K, Acosta T E, et al. Single-Pulse Standoff Raman Detection of Chemicals from 120 m Distance During Daytime[J]. Applied Spectroscopy, 2012, 66(11): 1279–85. [29] Hokr B H, Bixler J N, Noojin G D, et al. Single-shot stand-off chemical identification of powders using random Raman lasing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): 12320–12324. [30] Gomer N R, Gordon C M, Lucey P, et al. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept.[J]. Applied Spectroscopy, 2011, 65(8): 849–857. [31] Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer[J]. Applied Spectroscopy, 2016, 70(4): 666–675. [32] Hu G, Xiong W, Luo H, et al. The Research of Spatial Heterodyne Raman Spectroscopy with Standoff Detection[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2016, 36(12): 3951-3957 (in Chinese). [33] Long H, Liu H, Li Z, et al. Narrow-linewidth tunable fiber laser for spectral calibration of spatial heterodyne spectrometer[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2017, 34(3): 339-343(in Chinese). [34] Lin Q, Niu G, Wang Q, et al. Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications[J]. Applied Spectroscopy Reviews, 2013, 48: 487–508. [35] Sharma S K, Misra A K, Lucey P G, et al. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(4): 1036–1045. [36] Moros J, Laserna J J. New Raman–Laser-Induced Breakdown Spectroscopy Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing Platform[J]. Analytical Chemistry, 2011, 83(16): 6275–6285. [37] Sharma S K. New trends in telescopic remote Raman spectroscopic instrumentation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(4): 1008–1022. [38] Gasda P J, Acostamaeda T E, Lucey P G, et al. Next Generation Laser-Based Standoff Spectroscopy Techniques for Mars Exploration[J]. Applied Spectroscopy, 2015, 69(2): 173–192. [39] Acosta-Maeda T E, Misra A K, Muzangwa L G, et al. Remote Raman measurements of minerals, organics, and inorganics at 430m range[J]. Applied Optics, 2016, 55(36): 10283–10289. [40] Moros J, Lorenzo J A, Laserna J J. Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion[J]. Analytical and Bioanalytical Chemistry, 2011, 400(10): 3353–3365. [41] Measures R M. Laser Remote Sensing: Fundamentals and Applications[M]. Malabar, Fla: Krieger Publishing Company, 1992. [42] Bremer M T, Dantus M. Detecting micro-particles of explosives at ten meters using selective stimulated Raman scattering[A]. CLEO: 2014 (2014), paper JTh2A.5[C]. Optical Society of America, 2014: JTh2A.5. [43] Svanqvist M, Glimtoft M, Ågren M, et al. Stand-off detection of explosives and precursors using compressive sensing Raman spectroscopy[A]. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII[C]. International Society for Optics and Photonics, 2016, 9824: 98240C. |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[13] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
[14] | YU Wei, ZHOU Zhuoyan, SUN Zhongmou, ZHANG Xinglong, LIU Yuzhu, . Real-time detection of the genus Rosa L. using LIBS technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 494-501. |
[15] | DING Bokun, SHAO Ligang, WANG Kunyang, CHEN Jiajin, WANG Guishi, LIU Kun, MEI Jiaoxu, TAN Tu, GAO Xiaoming, ∗. Research on real-time detection technology of dissolved gas in seawater based on off-axis integrating cavity [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||