Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (6): 633-640.
• Spectroscopy • Next Articles
QIN Chaochao1;2, SONG Didi1;2, ZHOU Zhongpo1;2∗
Received:
2020-04-13
Revised:
2020-08-22
Published:
2020-11-28
Online:
2020-11-28
CLC Number:
QIN Chaochao, SONG Didi, ZHOU Zhongpo, ∗. Singlet exciton fission in rubrene analogueue C38H24S2[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 633-640.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Alvertis A M, Lukman S, Hele T J H, et al. Switching between coherent and incoherent singlet fission via solvent-induced |
symmetry breaking [J]. Journal of the American Chemical Society, 2019, 141(44): 17558-17570. | |
[2] | Breen I, Tempelaar R, Bizimana L A, et al. Triplet separation drives singlet fission after femtosecond correlated triplet pair |
production in rubrene [J]. Journal of the American Chemical Society, 2017, 139(32): 11745-11751. | |
[3] | Xia J L, Sanders S N, Cheng W, et al. Singlet fission: Progress and prospects in solar cells [J]. Advanced Materials, 2016, |
29 | (20): 1601652. |
[4] | Ni Bin, Li Xinhua. Research on narrow-band gap half lead-tin perovskite solar cells [J]. Chinese Journal of Quantum Electronics |
(量子电子学报), 2020, 37(1): 93-98 (in Chinese). | |
[5] | Singh S, Jones W J, Siebrand W, et al. Laser generation of excitons and fluorescence in anthracene crystals [J]. Journal of |
Chemical Physics, 1965, 42(1): 330-342. | |
[6] | Merrifield R, Avakian P, Groff R. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals [J]. Chemical |
Physics Letters, 1969, 3(3): 155-157. | |
[7] | Zhang Bo, Zhang Chunfeng, Li Xiyou, et al. Ultrafast spectroscopic study for singlet fission [J]. Acta Physica Sinica (物理学 |
报) | , 2015, 64(9): 094210 (in Chinese). |
[8] | Liu Yanping, Wu Yishi, Fu Hongbing. Research progress of singlet excitons [J]. Acta Physico-Chimica Sinica (物理化学学 |
报) | , 2016, 32(8): 1880-1893 (in Chinese). |
[9] | Stern H L, Musser A J, Gelinas S, et al. Identification of a triplet pair intermediate in singlet exciton fission in solution [J]. |
Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7656-7661. | |
[10] | Liu H Y,Wang Z W,Wang X M, et al. Singlet exciton fission in a linear tetracene tetramer [J]. Journal of Materials Chemistry |
C, 2018, 6(13): 3245-3253. | |
[11] | Trinh M T, Pinkard A, Pun A B, et al. Distinct properties of the triplet pair state from singlet fission [J]. Science Advances, |
20 | 17, 3(7): 1700241. |
[12] | Pensack R D, Ostroumov E E, Tilley A J, et al. Observation of two triplet-pair intermediates in singlet exciton fission [J]. |
Journal of Physical Chemistry Letters, 2016, 7(13): 2370-2375. | |
[13] | Chan W L, Ligges M, Zhu X Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic |
gain [J]. Nature Chemistry, 2012, 4(10): 840-845. | |
[14] | Stern H L, Cheminal A, Yost S R, et al. Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated |
dissociation control efficient endothermic singlet fission [J]. Nature Chemistry, 2017, 9(12): 1205-1213. | |
[15] | Zhang Manman. Theoretical Sudy on Electron Absorption and Fluorescence Spectra of Rubrene and Its Derivatives (红荧烯 |
及其衍生物电子吸收和荧光光谱的理论研究) [D]. Zhengzhou: Master Thesis of Zhengzhou University, 2019: 7-12 (in | |
Chinese). | |
[16] | Ishibashi Y, Inoue Y, Asahi T. The excitation intensity dependence of singlet fission dynamics of a rubrene microcrystal studied |
by femtosecond transient microspectroscopy [J]. Photochemical Photobiological Sciences, 2016, 15(10): 1304-1309. | |
[17] | Sun S M, Qin C C, Liu H, et al. Excitation wavelength dependent ICT character and ISC efficiency in a photocleavage agent |
of 1-aminoanthraquinone [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 234(15): 118200. | |
[18] | Ma L, Zhang K K, Kloc C, et al. Singlet fission in rubrene single crystal: Direct observation by femtosecond pump-probe |
spectroscopy [J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8307-8312. | |
[19] | Guo Wei, Chang Zhiqiang, Li Yuehua. Fragmentation of H2 in 405 nm intense femtosecond laser field [J]. Chinese Journal |
of Quantum Electronics (量子电子学报), 2018, 35(2): 129-135 (in Chinese). | |
[20] | Zhang Lili, Qin Chaochao. Effects of laser parameters and rotational temperature on molecular alignment of N2O in laser field |
[J] | Chinese Journal of Quantum Electronics (量子电子学报), 2018, 35(1): 37-41 (in Chinese). |
[21] | Korovina N V, Saptaparna D, Nett N, et al. Singlet fission in a covalently linked cofacial alkynyltetracene dimer [J]. Journal |
of the American Chemical Society, 2016, 138(2): 617-627. | |
[22] | Korovina N V, Joy J, Feng X T, et al. Linker-dependent singlet fission in tetracene dimers [J]. Journal of the American Chemical |
Society, 2018, 140(32): 10179-10190. |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[13] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
[14] | YU Wei, ZHOU Zhuoyan, SUN Zhongmou, ZHANG Xinglong, LIU Yuzhu, . Real-time detection of the genus Rosa L. using LIBS technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 494-501. |
[15] | DING Bokun, SHAO Ligang, WANG Kunyang, CHEN Jiajin, WANG Guishi, LIU Kun, MEI Jiaoxu, TAN Tu, GAO Xiaoming, ∗. Research on real-time detection technology of dissolved gas in seawater based on off-axis integrating cavity [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||