[1] Navid Khajehzadeh, Olli Haavisto, Lauri Koresaar.On-stream and quantitative mineral identification of tailing slurries using libs technique.[J].Minerals Engineering, 2016, 98(101):109-[2]Guo Lianbo, Zhang deng, Sun Lanxiang, et al.Development in the application of laser-induced breakdown spectroscopy in recent years: a review[J].Frontiers of Physics, 2021, 16(2):22500-[3] Harmon R S, Senesi G S.Laser-Induced Breakdown Spectroscopy – A geochemical tool for the 21st century.[J].Applied Geochemistry, 2021, 128(104929):-[4] Noll R.Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 2012[2023-07-15].[5] Khajehzadeh N, Haavisto O, Koresaar L.On-stream mineral identification of tailing slurries of an iron ore concentrator using data fusion of LIBS, reflectance spectroscopy and XRF measurement techniques.[J]. Minerals Engineering, 2017, 113(83):94-[6]尚栋, 孙兰香, 齐立峰, 等.基于循环变量筛选非线性偏最小二乘的铁矿浆定量分析[J].中国激光, 2021, 48(21):171-179[7]谢远明, 孙兰香, 袁德成, 等.基于互信息特征筛选偏最小二乘的激光诱导击穿光谱铁矿浆定量分析[J].冶金分析, 2022, 42(1):18-24[8]Chen T, Sun L, Yu H, Qi L, et al.Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry[J].Applied Optics, 2022, 61(7):D22-[9]Kumar M A, Spegazzini N, Zhang Chi, et al.Less is more: avoiding the libs dimensionality curse through judicious feature selection for explosive detection[J].Scientific reports, 2015, 5(8):13169-[10]Shin S, Moon Y, Lee J, et al.Signal processing for real-time identification of similar metals by laser-induced breakdown spectroscopy[J].Plasma Science and Technology, 2019, 21(3):034011-[11]孔海洋, 孙兰香, 胡静涛, 等.激光诱导击穿光谱定量化标定谱线自动选择方法[J].光谱学与光谱分析, 2016, 36(5):1451-1457[12]Wang G, Sun L, Wang W, et al.A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy[J].Plasma Science and Technology, 2020, 22(7):074002-[13]Deng F, Ding Y, Chen Y, Zhu S, Chen F.Quantitative analysis of the content of nitrogen and sulfur in coal based on laser-induced breakdown spectroscopy: effects of variable selection[J].Plasma Science and Technology, 2020, 22(7):074005-[14] Sch?lkop B.An Introduction to Support Vector Machines[M]//Recent Advances and Trends in Nonparametric Statistics. Elsevier, 2003: 3–17[2023-07-18].[15] Li H, Liang Y, Xu Q, Cao D.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, [J].Analytica Chimica Acta, 2009, 648(1):-[16]Araújo M C U, Saldanha T C B, Galv?o R K H, et al.The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J].Chemometrics and Intelligent Laboratory Systems, 2001, 57(2):65-73[17]Galv?o R K H, Araújo M C U, Silva E C, et al.Cross-validation for the selection of spectral variables using the successive projections algorithm[J].Journal of the Brazilian Chemical Society, 2007, 18(8):1580-1584[18]Alex M A.An introduction to support vector machines and other kernel‐based learning methods[J].Kybernetes, 2001, 30(1):103-115[19] Barnes R J, Dhanoa M S, Susan J, et al.Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra[J]. Applied Spectroscopy, 1989, 43(5).772-777.[J].Applied Spectroscopy, 1989, 43(5):772-777 |