量子电子学报 ›› 2021, Vol. 38 ›› Issue (3): 290-300.doi: 10.3969/j.issn.1007-5461.2021.03.004

• 光谱 • 上一篇    下一篇

太阳光谱地基跟踪遥感系统光学设计

胡凯1,2, 徐亮1∗, 杨伟锋1, 曲立国1,2, 金岭1, 成潇潇1,2, 沈先春1,2, 王钰豪1,2, 刘建国1,2, 刘文清1,2   

  1. 1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽合肥230031; 2 中国科学技术大学, 安徽合肥230026
  • 收稿日期:2020-04-26 修回日期:2020-06-01 出版日期:2021-05-28 发布日期:2021-05-28
  • 通讯作者: E-mail: xuliang@aiofm.ac.cn
  • 作者简介:胡凯( 1996 - ), 安徽宿州人, 研究生, 主要从事红外光谱探测系统研制及其应用方面的研究。E-mail: khu@aiofm.ac.cn
  • 基金资助:
    Supported by National Key Research and Development Plan (国家重点研发计划, 2016YFC0201002), Chinese Academy of Sciences Advanced Research Projects (中国科学院前沿科学重点研究项目, QYZDY-SSW-DQC016), Anhui Province Key Research and Development Plan (安徽 省重点研究与开发计划, 1804d08020300), National Key Research and Development Plan (国家重点研发计划, 2016YFC0803001-08)

Optical design of solar spectrum ground-based tracking remote sensing system

HU Kai1,2, XU Liang1∗, YANG Weifeng1, QU Liguo1,2, JIN Ling1, CHENG Xiaoxiao1,2, SHEN Xianchun1,2, WANG Yuhao1,2, LIU Jianguo1,2, LIU Wenqing1,2   

  1. 1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China
  • Received:2020-04-26 Revised:2020-06-01 Published:2021-05-28 Online:2021-05-28

摘要: 开发了一种基于太阳跟踪方法用于测量大气污染气体成分的傅里叶变换红外(FTIR) 光谱系统, 该系统 由太阳跟踪器、光路传输部分、光谱仪组成。设计了一种正交反射镜系统用于收集太阳光, 利用小孔成像原理 实现太阳跟踪, 保证跟踪光路与测量光路同轴。推导了跟踪旋转时位置探测器(PSD) 上光斑轨迹的理论计算公 式, 用于指导PSD 算法。该系统的工作波段为600 ∼ 5000 cm−1, 分辨率为0.5 cm−1。利用光学软件Zemax 分析 了用于汇聚干涉光束的抛物镜焦距对干涉条纹的影响, 确定抛物镜焦距值为52.5 mm, 满足系统指标的入射光的 最大倾斜角为0.118◦, 给出了PSD 的测量精度和系统跟踪精度的技术指标。并利用搭建的实验平台进行了初步 户外实验, 验证了系统的合理性。

关键词: 光谱学, 太阳光谱, 太阳跟踪, 光学设计, 傅里叶变换, 光斑轨迹

Abstract: A Fourier transform infrared (FTIR) spectroscopy system based on the sun tracking method is developed to measure the composition of atmospheric pollution gases. The system consists of a solar tracker, an optical transmission section, and a spectrometer. An orthogonal mirror system, which uses the principle of pinhole imaging to realize sun tracking, is designed for collecting sunlight, ensuring that the tracking optical path is coaxial with the measuring optical path. The theoretical calculation formula of the spot trajectory on the position sensitive detector (PSD) during tracking rotation is derived to guide the PSD algorithm. The working band of the system ranges from 600 cm−1 to 5000 cm−1, and the resolutionis 0.5 cm−1. The influence of the focal length of the parabolic mirror used to converge the interference beam on the interference fringe is analyzed using the optical software Zemax. The focal length value is determined to be 52.5 mm, the maximum tilt angle of the incident light under the requirements of the system index is determined to be 0.118◦, and the technical indexes of measurement accuracy of the PSD and tracking accuracy of the system are also given. Furthermore, the preliminary outdoor experiment is carried out by using the developed experimental platform, and the rationality of the system is verified.

Key words: spectroscopy, solar spectrum, sun tracking, optical design, Fourier transform, spot trajectory

中图分类号: