[1] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? [J]. Phys. Rev., 1935, 47(10): 777-780.
[2] Schrödinger E. Die gegenwärtige Situation in der Quantenmechanik [J]. Die Naturwissenschaften 23 (1935) 807_812; 823_828; 844_849.
[3] Bell J S. 1964, Physics (Long Island City, N.Y.) 1, 195.
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, and Wootters W K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70 (13): 1895-1899
[5] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett.,1991, 67 (6): 661-663
[6] Raussendorf R, Briegel H J. A one-way quantum computer [J]. Phys Rev. Lett., 2001, 86 (22):5188-5191.
[7] Leibfried D, Knill E, et al. Creation of a six-atom ‘Schrödinger cat’ state [J]. Nature, 2005, 438: 639-642.
[8] Häffner H, et al. Scalable multiparticle entanglement of trapped ions [J]. Nature, 2005, 438: 643-646.
[9] Lu C Y, et al. Experimental entanglement of six photons in graph states [J]. Nature Phys., 2007, 3: 91-95.
[10] Gao W B, et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state [J]. Nature Physics,2010, 6, 331-335
[11] Neumann P, et al. Multipartite entanglement among single spins in diamond [J]. Science, 2008, 320 (5881): 1326-1329.
[12] Hald J, et al. Spin squeezed atoms: A macroscopic entangled ensemble created by light [J]. Phys. Rev. Lett., 1999, 83 (77): 1319-1322.
[13] Mandel O, et al. Controlled collisions for multi-particle entanglement of optically trapped atoms [J]. Nature, 2003, 425: 937.
[14] Peres A. Collective tests for quantum nonlocality [J]. Phys. Rev. A, 1996, 54(4): 2685-2689.
[15] Jamiolkowski A. Linear transformations which preserve trace and positive semidefiniteness of operators [J]. Rep. Math. Phys., 1972 3: 275-278
[16] Horodecki M, Horodecki P, and Horodecki R. Inseparable Two Spin- 1/2 density matrices can be distilled to a singlet form [J]. Phys. Rev. Lett., 1997, 78 (4): 574-577
[17] Terhal B M. A family of indecomposable positive linear maps based on entangled quantum states [J]. Linear Algebra Appl. 323, 61-73
[18] Horodecki M, Oppenheim J, and Horodecki R. Are the laws of entanglement theory thermodynamical [J]. Phys. Rev. Lett., 2002, 89, 240403
[19] Vedral V, and Plenio M B. Entanglement measures and purification procedures [J]. Phys. Rev. A, 1998, 57 (3): 1619-1633
[20] Bennett C H, DiVincenzo D P, Smolin J, and Wootters W K. Mixed-state entanglement and quantum error correction [J]. Phys. Rev. A, 1996, 54(5): 3824-3851
[21] Eisert J, and Plenio M B. A comparison of entanglement measure [J] J. Mod. Opt., 1999, 46 (1): 145-154
[22] Hall W. A new criterion for indecomposability of positive maps [J]. J. Phys. A: Math. Gen. 39 (2006) 14119.
[23] Hiroshima T. Majorization criterion for distillability of a bipartite quantum state [J]. Phys. Rev. Lett., 2003, 91, 057902.
[24] Zhang Y D. Principles of Quantum Information Physics (量子信息物理基本原理) [M] Science Press (Beijing) 2005, 81-85 (in Chinese).
[25] Augusiak R, and Stasińska J. General scheme for construction of scalar separability criteria from positive maps [J]. Phys. Rev. A, 2008, 77, 010303(R)
[26] Uffink J. Quadratic Bell inequalities as tests for multipartite entanglement [J]. Phys. Rev. Lett., 2002, 88, 230406.
[27] Horodecki M, Horodecki P, Horodecki R. Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps [J]. Phys. Lett. A, 2001, 283 (1-2): 1-7
[28] Yu C S, Song H S. Separability criterion of tripartite qubit systems [J]. Phys. Rev. A, 2005, 72, 022333
[29] Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessary and sufficient conditions [J]. Phys. Lett. A, 1996, 223 (1-2): 1-8
[30] Gühne O and Hyllus P. Investigating Three Qubit Entanglement with Local measurement [J]. International Journal of Theoretical Physics, 2003, 42(5):1001-1013
[31] Gühne O, Hyllus P, and Bruss D. et al. Experimental detection of entanglement via witness operators and local measurements [J]. Journal of Modern Optics, 2003, 50 (6-7): 1079-1102.
[32] Gühne O and Géza Tóth. Entanglement detection [J]. Physics Reports, 2009, 474 (1-6): 1-75.
[33] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels [J]. Phys. Rev. Lett., 1997, 78 (10):2031
[34] Rains, E., 2000, Semi-definite program for distillable entanglement, eprint quant-ph/0008047.
[35] Vedral V, and. Plenio M B. Entanglement measures and purification procedures [J]. Phys. Rev. A, 1998, 57 (3): 1619-1633.
[36] Bennett C H, DiVincenzo D P, Smolin J, and Wootters W K. Mixed-state entanglement and quantum error correction [J]. Phys. Rev. A, 1996, 54(5): 3824-3851
[37] Hill S, Wootters W K. Entanglement of a pair of quantum bits. [J]. Phys. Rev. Lett., 1997, 78(26):5022-5025
[38] Vidal G and Werner R F. Computable measure of entanglement [J]. Phys. Rev. A, 2002, 65, 032314
[39] Vidal G and Tarrach R. Robustness of entanglement [J]. Phys. Rev. A, 1999, 59 (1): 141-155.
[40] Rudolph O. A new class of entanglement measures [J]. J. Math. Phys., 2001, 42 (11): 5306-5314.
[41] Tucci R. Entanglement of distillation and conditional mutual information, eprint quant-ph/0202144.
[42] Karnas S and Lewenstein M. Separable approximations of density matrices of composite quantum systems [J]. J. Phys. A: Math. Gen., 2001, 34, 6919.
[43] Brandão F G S L, and Vianna R O. Separable multipartite mixed states- operational asymptotically necessary and sufficient conditions [J]. Phys. Rev. Lett., 2004, 93, 220503.
[44] Yang T, Zhang Q, Zhang J, et al. All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement [J]. Phys. Rev. Lett., 2005, 95, 240406.
[45] Horodecki R et al. Quantum entanglement [J]. Rev. Mod. Phys., 2009, 81(2): 865-942.
[46] Gühne O, Reimpell M and Werner R F. Estimating entanglement measures in experiments [J]. Phys. Rev. Lett., 2007, 98, 110502
[47] Eisert J, Brandão F G S L and Audenaert K M R. Quantitative entanglement witnesses [J]. New Journal of Physics, 2007, 9, 46
[48] Gühne O, and Lütkenhaus N. Nonlinear entanglement witness [J]. Phys. Rev. Lett., 2006, 96,170502.
[49] Tóth G, Knapp C, Gühne O, Briegel H J. Optimal spin squeezing inequalities detect bound entanglement in spin models [J]. Phys. Rev. Lett., 2007, 99, 250405. |